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ARTICLE

Intraplate extension of the Indochina plate deduced from 26 to 24 Ma A-type
granites and tectonic implications
Xinyu Wanga,b, Xin Yaoa, Shifeng Wanga, Xinyou Zhub, Jingbin Wangb and Chao Wangc

aKey laboratory of Neotectonic Movement and GeoHazard, Ministry of Land and Resources, Institute of Geomechanics, Chinese Academy of
Geological Sciences, Beijing, China; bBeijing Institute of Geology for Mineral Resources, Beijing, China; cInstitute of Tibetan Plateau Research,
Chinese Academy of Sciences, Beijing, China

ABSTRACT
In recent years, abundant Cenozoic potassic magmatic rocks from eastern Tibet and the Indochina
Block have been studied extensively; however, until now, knowledge of Cenozoic A-type granites
from the interior of the Indochina Block has been limited. U–Pb zircon ages for six samples of the
Salei granite pluton within the Indochina Block range from 26 to 24 Ma. In situ Lu–Hf and Sr–Nd
isotope data indicate that the Salei pluton was sourced mostly from Mesoproterozoic basement
rocks of the Indochina Block, mixed with a small volume of juvenile crust derived from the
underplated mantle. Whole-rock major element geochemistry indicates that the six samples are
peraluminous high-K calc-alkaline granites. The trace and rare earth element patterns are typical of
within-plate A-type granites. In combination with previous research, the present results suggest that
the late Oligocene Salei granite formed from the convective removal of thickened lower continental
lithospheric mantle. Moreover, the presence of 26–24 Ma A-type granites in the Indochina Block
indicates within-plate extension in the interior of the block during the late Oligocene.
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1. Introduction

Cenozoic (ca. 50–0 Ma) potassic to ultrapotassic mafic
volcanic and potassic felsic intrusive magmatic suites are
common throughout the eastern Indo-Asia collision zone.
This zone extends for over 2000 kmalong the Jinshajiang–
Ailaoshan–Red River tectonic belt and across eastern
Tibet, the Lanping–Simao area, and the Indochina block
(Chung et al. 1998; Deng et al. 2014). This region is char-
acterized by high topographic relief and is bounded by a
series of north- and northwest-striking Cenozoic faults: to
the west by the Gaoligong and Batang–Lijiang strike-slip
systems; to the east by the Longmen Shan Thrust Belt and
the Xiaojiang Fault; and to the south by the Red River
Fault (Wang et al. 1997; Figure 1). South of the Red River
Fault, the Indochina Block is strongly deformed in the
north but behaves more like a rigid block in the south.
In eastern Tibet, both Cenozoic igneous rocks and a series
of early-middle Cenozoic basins are located along a
100 km-wide narrow belt following the Nangqian Thrust
Belt, the Batang-Lijiang fault system, and the Red River
shear zone (Figure 1). In contrast, Cenozoic igneous rocks
are widespread distributed in the 500-km-wide Indochina
block (Figure 1).

In recent years, these Cenozoic potassic magmatic
rocks have been studied extensively, and their geochro-
nology, petrogenesis and tectonic evolution are
debated. These rocks become progressively younger
from north to south (Figure 1; Table 1), being
41–33 Ma in eastern Tibet (Chung et al. 1998; Wang
et al. 2001, 2002), 36–33 Ma in the Lanping-Simao area
(Zhu et al. 2009; Lu et al. 2012), 27–24 Ma in northern
Laos (Nagy et al. 2000) and 16–0 Ma in southern
Vietnam (Lee et al. 1998; An et al. 2017). In addition,
these rocks can be sub-divided into an early phase from
ca. 40 to 30 Ma (e.g. Chung et al. 1998; Wang et al. 2001,
2002; Lu et al. 2012) and a late phase from ca. 24 to
0 Ma (e.g. Akciz et al. 2008; Turner et al. 1993, 1996;
Chung et al. 1998; Nagy et al. 2000; Song et al. 2010).

The mechanism of magma generation for these rocks
is also debated, and the following models have been
proposed: (1) eastward continental under-thrusting of
India, leading to fluid infiltration into the overlying man-
tle wedge and subsequent melting (Wang et al. 2001); (2)
movement along the Ailaoshan–Red River Shear Zone
and resultant tectonic decompression (Leloup et al.
1995, 1999; Nagy et al. 2000; Liang et al. 2006, 2007);
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and (3) convective removal of thickened lower continen-
tal lithospheric mantle (Chung et al. 1998; Lu et al. 2013).

Previous studies have provided critical information
on the tectonic evolution of the eastern Tibet Plateau,
as well as Lanping-Simao area; however, there is a
limited understanding of the late Oligocene to early

Miocene igneous rocks of the Lanping-Simao area and
the Indochina Block. Although the ages of these rocks
have been studied in detail (Akciz et al. 2008; Nagy et al.
2000; Song et al. 2010; Cao et al. 2011; Tang et al. 2013a,
2013b), their petrogenesis and magmatic evolution
remain uncertain because of a lack of geochemical data.

Figure 1. Cenozoic tectonic map of eastern Tibet and Indochina (modified after Wang et al. 2001).
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This contribution presents new geochronological,
geochemical, and Sr–Nd–Hf isotopic data from A-type
granites in Laos, with the aims of (1) understanding the
magma source regions of the late Oligocene granitoids
and their petrogenesis; (2) constraining the emplace-
ment ages of the granites; and (3) gaining insights into
the mechanism that led to their generation.

2. Geological setting and sampling

Samples were collected from the Salei granite pluton,
which is located at the northeastern edge of the
Xiengkhouang Plateau, at an average elevation of
2000 m a.s.l. (Figure 2). The Salei pluton is located
~ 100 km northwest of the Bu Khang Dome, which was
active from 32 to 22 Ma (Jolivet et al. 1999; Nagy et al.
2000; Figure 2), and is situated within the Truong Son Belt
of the Song Ma Suture Zone. The Song Ma Suture Zone
(Figure 1) consists of the Song Ca volcanic arc, the Truong
Son Belt (Truong Son arc granitoids) and the Song Ma
tectonic mélange, from west to east. The Song Ca volca-
nic arc is composed mainly of calc-alkaline volcanics, with
ages of 270 to 248 Ma obtained by 40Ar/39Ar dating (Lan
et al. 2003). The Truong Son Belt consists of widespread
late Paleozoic to early Mesozoic intrusions (Liu et al. 2012;
Wang et al. 2016). The stratigraphy of the Truong Son Belt
includes Neoproterozoic high-grade metamorphic rocks;
Silurian to Lower Devonian and upper Permian marine
sedimentary rocks; upper Permian basalt, amygdaloidal
basalt, and tuffs; and Triassic marine and terrigenous
sedimentary rocks (DGMV 2005). The Song Ma mélange

is defined as the boundary between the Indochina and
South China blocks, and it formed during the westward
subduction of the South China Sea under the Indochina
Block in the late Permian to Early Triassic (e.g. Lepvrier
et al. 2004, 2008; Liu et al. 2012; Faure et al. 2014; Wang
et al. 2016; Figure 1). The mélange consists of sheets of
Neoproterozoic to early Triassic rocks that are highly
sheared, juxtaposed along shear zones, and intruded by
gabbro, plagiogranite, granodiorite, and granite (DGMV
2005). East of the Song Ma mélange are tectonic units of
the South China Block (Lepvrier et al. 2004; 2008; Faure
et al. 2014; Wang et al. 2016; Figure 1) including
Proterozoic greenschist to amphibolite facies meta-
morphic rocks of the Nam Co Complex, marine carbo-
nates, mafic to ultramafic volcanic rocks and continental
facies sediments of the Song Da Rift Zone, Mesozoic
continental sediments of the Tu Le Basin, and the Song
Chay Suture Zone, which was cut by the Ailaoshan-Red
River shear zone in the Cenozoic.

The Salei granite pluton intruded Triassic purple
sandstone and silt that are monoclinal and dip to
the northeast. Samples LS-3, −4, −5, −6, −8 and −9
were collected from different parts of the Salei pluton.
The contact between these strata and the Salei pluton
is hidden by soil and vegetation.

3. Analytical method

Six granite samples were prepared for zircon U-Pb LA-ICP-
MS dating. Zircons were separated using conventional
heavy-liquid and magnetic techniques. Pure zircon

Table 1. Summary of sample localities, lithology, and ages of the Late Oligocene to Early Miocene potassic magmatism in Eastern
Tibet and Indochina block.

Sample Location Lithology Age(Ma) ± 2σ Method Reference

Lanping-Simao area
98JL18.4 NW of Lanping Leucogranite 25.53 0.08 Monazite U–Pb Akciz et al. (2008)
98JU27.1 SW of Lanping Leucogranite 24.92 0.1 Monazite U–Pb Akciz et al. (2008)
DC0822–1 NW of Midu Granite 26.95 0.34 Zircon U-Pb LA-ICPMS Cao et al. (2011)
DC0835-1 NW of Midu Granite 25.31 0.18 Zircon U-Pb LA-ICPMS Cao et al. (2011)
DC08-2-1 NW of Midu Granitic Pegmatite 25.49 0.41 Zircon U-Pb LA-ICPMS Cao et al. (2011)
DC08-8–5 NW of Midu Granitic Pegmatite 22.91 0.19 Zircon U-Pb LA-ICPMS Cao et al. (2011)
DC0810-2 NW of Midu Granitic Pegmatite 20.27 0.23 Zircon U-Pb LA-ICPMS Cao et al. (2011)
NJ66 SE of Gongshan Leucogranite 22.7 0.8 Zircon U-Pb LA-ICPMS Song et al. (2010)
ST122 SE of Gongshan Tourmaline granite 24.4 0.7 Zircon U-Pb LA-ICPMS Song et al. (2010)
NJ74 SE of Gongshan Tourmaline granite 25.4 0.5 Zircon U-Pb LA-ICPMS Song et al. (2010)
AL0841-8 SE of Honghe Biotite plagioclase granitoids 21.8 1 Zircon U-Pb LA-ICPMS Tang et al. (2013a)
AL0814-2 SE of Honghe Granitic rocks 25.9 1.6 Zircon U-Pb LA-ICPMS Tang et al. (2013a)
10GLG01-2 West of Yongping Tourmaline granite 21.7 0.3 Zircon U-Pb LA-ICPMS Tang et al. (2013b)
10GLG05-1 West of Yongping Tourmaline granite 22.7 0.3 Zircon U-Pb LA-ICPMS Tang et al. (2013b)

The potassic granitoids in Indochina blocks
LS3 Xiengkhouang Plateau (Northern Laos) Syenogranite 24 0.6 Zircon U-Pb LA-ICPMS This study
LS4 Xiengkhouang Plateau Syenogranite 26 0.7 Zircon U-Pb LA-ICPMS This study
LS5 Xiengkhouang Plateau Syenogranite 27 0.3 Zircon U-Pb LA-ICPMS This study
LS6 Xiengkhouang Plateau Syenogranite 24 0.4 Zircon U-Pb LA-ICPMS This study
LS8 Xiengkhouang Plateau Syenogranite 25 0.6 Zircon U-Pb LA-ICPMS This study
LS9 Xiengkhouang Plateau Syenogranite 27 0.4 Zircon U-Pb LA-ICPMS This study
VGS-32 The northern Bu Khang (Central Vietnam) Ganonite 26 0.2 LA-ICPMS Nagy et al. (2000)

VGS-33 The northern Bu Khang Granite 23.7 ______ LA-ICPMS Nagy et al. (2000)
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grains were selected using a binocular microscope.
Representative grains were placed into an epoxy resin,
along with several standard transmission electron micro-
scopy (TEM) samples, and ground down by about half to
expose the zircon interior, before performing U-Pb dating.
Before and after the dating, the transmitted and reflected
lightwere analysed, using amicroscope and backscattering
images together with cathode luminescence images, to
determine the crystal shape, inner structure and dating
position.

U–Pb dating on zircons was conducted using a New
Wave UP193FX Excimer laser coupled with an Agilent
7500a ICPMS at the Key Laboratory of Continental
Collision and Plateau Uplift, Institute of Tibetan Plateau
Research, Chinese Academy of Sciences, Beijing. The
diameter of the laser beam was 35 μm, and the duration
of ablation was 45 s. The standard zircon 91,500 was
used as an external standard to correct the isotopic
ratios, the TEM zircon was used as a monitor and the
concentrations of the elements were calculated using
NIST612 glass as the external standard and 29Si as the
internal standard. The age data were processed using
Glitter 4.4 software (details can be found in Jackson et al.
(2004)), and the diagrams were produced using the
Isoplot 3.0 Toolkit (Ludwig 2003).

In-situ Hf isotope analysis was done on zircon grains
using LA-ICP-MS with a beam size of 60 μm and laser

pulse frequency of 8 Hz. Details of instrument conditions
and data acquisition were given in Wu et al. (2006) and Xie
et al. (2008). During the analysis, 176Hf/177Hf ratios of the
zircon standard (91,500) were 0.282286 ± 12 (2σ, n = 21).
The εHf(t) values (parts in 104 deviation of initial Hf isotope
ratios between the zircon sample and the chondritic reser-
voir) and TDM2 (zircon Hf isotope crustal model ages) based
on a depleted-mantle source and an assumption that the
protolith of the zircon’s host magma has the average con-
tinental (crustal 176Lu/177Hf ratio of 0.015) were calculated
followingGriffin et al. (2002), using the 176Ludecay constant
given in Blichert-Toft andAlbarède (1997). About six granite
samples were chosen for whole-rock major, rare earth and
trace elements analysis. Samples for elemental analysis
were powdered to < 20 μm using an agate mill. Major
elements analyses were conducted at the Institute of
Geology and Geophysics, CAS. Major element abundances
(wt.%) were determined on whole-rock samples by a
Phillips PW X-ray fluorescence spectrometer (XFR-2400)
and yielded analytical uncertainty < 5% (± 1σ). Rare earth
and other trace elements were analysed using ICP-MS tech-
niques at the Institute of Tibetan Plateau Research, CAS. The
detailed operating conditions for the laser ablation system,
the ICP-MS instrument and data reduction were the same
as thosedescribedby Liu et al. (2008), with theuncertainties
for all elements less than 5%.

Sr and Nd isotopic measurements were performed on a
Nu Plasma II multi-collector inductively coupled plasma
mass spectrometer (MC-ICP-MS，Nu Instruments Ltd., UK)
at LCPU (Laboratory of Continental Collision and Plateau
Uplift), ITP CAS (Institute of Tibetan Plateau Research,
Chinese Academy of Sciences). All measured Sr and Nd
ratios are fractionation corrected to 86Sr/88Sr = 0.1194 and
146Nd/144Nd = 0.7219, respectively. The 87Sr/86Sr ratio of the
NBS987 Sr standard was 0.710248 ± 4 (2σ), and the
143Nd/144Nd ratios of the JNDI-1 Nd standard solutions
were 0.512113 ± 10(2σ). For the calculation of ISr, εNd(t)
and Nd model ages, the following parameters were used:
λRb = 1.42 × 10−11 year−1 (Steiger and Jäger
1977); λSm = 6.54 × 10−12 year−1 (Lugmair and Marti
1978); (147Sm/144Nd)CHUR = 0.1967, (143Nd/144Nd)

CHUR = 0.512638 (Jacobsen and Wasserburg 1980);
(143Nd/144Nd)DM = 0.513151, (147Sm/144Nd) DM = 0.2136
(Liew and Hofmann 1988).

4. Analytical results

4.1. U–Pb zircon geochronology and in situ Lu–Hf
isotopic analysis of the salei pluton

Six granite samples were prepared for U–Pb zircon dat-
ing by LA–ICP–MS; the analytical methods are outlined
in Section 3, with results provided in Figure 2 and

Figure 2. Geological map of the Salei pluton (modified after
DGMV 2005). Yellow star indicates the location of the Salei
granite pluton. The age of Proterozoic metamorphic rocks is
from Nagy et al. (2000).
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Supplementary Table 1 (errors are all at 1σ). Zircons
from samples LS-3, −4, −5, −6, −8 and −9 are light
yellow to transparent, euhedral and prismatic.
Cathodoluminescence images (CL) show that these zir-
cons generally have luminescent (low-U) cores that
show euhedral fine-scale oscillatory igneous zoning.
They generally range from 120 to 200 μm in length
and 50 to 80 μm in width. We selected 25–35 repre-
sentative zircons from samples LS-3, −4, −5, −6, −8 and
−9 for U–Pb dating (Supplementary Table 1). The mean
Th/U ratios are 0.43, 0.39, 0.56, 0.58, 0.46 and 0.52,
respectively, indicating a magmatic origin. The analyses
generally group together and yield weighted mean
206Pb/238U ages of 24 ± 0.6 Ma for LS-3 (MSWD = 1.0,
1σ), 26 ± 0.7 Ma for LS-4 (MSWD = 1.8, 1σ), 26 ± 0.3 Ma
for LS-5 (MSWD = 1.6, 1σ), 26 ± 0.4 Ma for LS-6
(MSWD = 0.8, 1σ), 26 ± 0.3 Ma for LS-8 (MSWD = 1.5,
1σ) and 26 ± 0.4 Ma for LS-9 (MSWD = 1.1, 1σ)
(Figure 3). We interpret these ages to represent the
timing of crystallization of these samples and the Salei
pluton as a whole.

We selected samples LS-3, −4, −8 and −9 for in situ
Lu–Hf isotopic analyses on zircon, based on the results
of the U–Pb dating. Around 20 spots were analysed
from each sample; the analytical methods are defined
in Section 3, and results are provided in Figure 4
and Supplementary Table 2 (errors are all at 1σ). All
zircons from samples LS-3, −4, −8 and −9 are of

magmatic origin. The samples lack inherited zircons
and U–Pb ages ranging from 26 to 24 Ma. These four
samples have 176Hf/177Hf ratios of 0.282198–0.282764,
0.282576–0.282750, 0.282602–0.282841 and 0.282509–
0.282731, respectively. The majority of spot analyses
yielded negative εHf(t) values; however, some are posi-
tive. The mean εHf(t) values for these four samples are
−4.3, – 3.2, −1.9 and −2.8, respectively. The mean crus-
tal Hf two-stage model ages (TDM2) are 1.38, 1.31, 1.23
and 1.29 Ga, respectively (Figure 4).

4.2. Whole-rock major, trace and rare earth
element geochemistry

Major, trace and rare earth element geochemical data for
the six granitic rocks sampled from the Salei pluton are
listed in Supplementary Table 3, and the analytical meth-
ods are described in Section 3. The LS series granitic
samples yield a narrow range of compositions, with SiO2

of 74. 6to 77.5 wt.% andNa2O + K2O of 8.1 to 8.4 wt.%. The
K2O contents are much higher than Na2O contents in
these rocks, with K2O/Na2O ranging from 1.2 to 1.4. On
the Q–A–P diagram (Figure 5(a)), all samples plot within
the syenogranite field. On the SiO2−K2O+ Na2O diagram
of Middlemost (1994), all samples fall within the granite
field (Figure 5(b)). The SiO2−K2O diagram (Peccerillo and
Taylor 1976) shows that all the granitic rocks are high-K
calc-alkaline (Figure 5(c)). Their Al2O3 contents range from

Figure 3. Cathodoluminescence (CL) images of representative zircon grains and zircon age concordia diagrams of the Salei granites
in northern Laos.
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12.5 to 12.8 wt.%, aluminium saturation index (A/CNK)
values range from 1.00 to 1.04, and Litam index values
range from 1.9 to 2.0(< 3.3); thus, the samples are peralu-
minous high-K calc-alkaline granites.

Samples LS-3, −4, −5, −6, −8 and −9 show similar
patterns on chondrite-normalized (Boynton 1984) and
N-MORB-normalized (N-MORB = Normal Mid-Ocean
ridge basalt; Sun and McDonough 1989) rare earth
and trace element plots. The rocks show light rare
earth element (LREE) enrichment and flat heavy rare
earth element (HREE) patterns on a chondrite-

normalized rare earth element (REE) diagram (Figure 6
(a)). The value of LREE/HREE ranges from 3.4 to 7.4, and
LaN/YbN ranges from 3.2 to 6.6. A negative Eu anomaly
is observed with a mean δEu value of ~ 0.18. The rocks
show variable enrichments in Rb, Th and U, and deple-
tions in Ba, Sr, Ti and Nb (Figure 6(b)).

4.3. Sr–Nd isotopes

Sr and Nd isotopic compositions of the Salei pluton are
listed in Supplementary Table 4. Six samples of the pluton

Figure 4. εHf(t) vs. U–Pb age diagram for the Salei granites in northern Laos. Data points for 37–32 Ma felsic intrusions (Lu et al.
2012) from the Lanping–Simao area are shown for comparison.

Figure 5. (a) Quartz–alkali feldspar–plagioclase (QAP) diagram (after Streckeisen 1976) for the Salei granites. (b) (K2O + Na2O) vs.
SiO2 classification diagram (after Middlemost 1994) for the Salei granites. (c) K2O vs. SiO2 diagram (after Peccerillo and Taylor 1976)
showing the calc-alkaline to high-K calc-alkaline character of the Salei granites.
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were selected for Sr–Nd isotopic analysis. They exhibit
high 87Sr/86Sr ratios (0.741734–0.746650) and consistent
143Nd/144Nd ratios (0.512035–0.512062) (Supplementary
Table 4). Initial 87Sr/86Sr ratios vary from 0.734291 to
0.741200, and εNd(t) values range from -11.6 to -11.1.
The samples yield a narrow range of TDM2(Nd) model
ages (1737–1764 Ma), slightly higher than their TDM2(Hf)
model ages (1.29–1.38 Ga) (Supplementary Table 2).

5. Discussion

5.1. Tectonic setting

Granitoids have traditionally been grouped into I-, S-,
M-, and A-types (Chappell and White 1974; Loiselle and
Wones 1979). Accordingly, they provide petrogenetic
‘Windows’ into the evolution of deeper crustal sources.
Moreover, different granitoids usually represent differ-
ent tectonic settings during the evolution of orogency,
including subduction, syn- to post-collisional and post-
orogenic extensional settings (e.g. Chappell and White
1974, 1992; Brown 1994; Barbarin 1999; Bonin 2007).
For example, many peralkaline and alkaline granites are
associated with post-tectonic within-plate extension
(e.g. Bonin 2007), whereas subduction-related granites
tend to be metaluminous, although some metalumi-
nous granites are collision-related (e.g. Martin 1987;
Wedepohl 1991). In addition, granites related to con-
tinent–continent collision tend to be peraluminous
(Wedepohl 1991; Chappell and White 1992). However,
several studies have demonstrated that the majority of
collision-related, strongly peraluminous granites were
emplaced in post-collisional settings after the peak of
crustal thickening (Sylvester 1998). The original defini-
tion of the term A-type focused on anhydrous granites
with low oxygen fugacity originating from alkali basaltic
magmas, and the other form of A-type granite is

derived from melting of the dehydrated lower crust
(Loiselle and Wones 1979). During subsequent studies
(Collins et al. 1982; Whalen et al. 1987; Eby 1990, 1992;
Creaser et al. 1991; Frost and Frost 1997; Bonin 2007),
the term has been applied to a much broader spectrum
of granites. The geochemical characteristics of these
granites include relatively high SiO2, K2O, total alkalis
(Na2O + K2O), (Na2O + K2O)/CaO, FeO

T/MgO, Ga/Al, and
high field strength elements (HFSE; Zr, Y, Nb, Ce), low
Al2O3 and CaO contents, and low concentrations of
those trace elements compatible in mafic silicates (Cr,
Ni, Co, and Sc) and feldspars (Ba, Sr, and Eu). The
samples of the present study display most of the geo-
chemical characteristics of A-type granites, including
high SiO2 (74.57–76.05 wt.%), K2O + Na2O (8.06–
8.37 wt.%), FeOT/(FeOT + MgO) (0.93–0.97), Nb (20–37
ppm), and 10,000 × Ga/Al (1.41–1.56). Discrimination
diagrams have been widely applied to distinguish
A-type granites from the other granite types (Whalen
et al. 1987; Eby 1990, 1992). On the K2O/MgO and FeOT/
MgO vs. 10,000 × Ga/Al diagrams (Figure 7(a, b)), the
studied granites plot within the A-type granite fields.
The high FeOT/(FeOT + MgO) ratio (0.93–0.97) is chemi-
cally similar to the ferroan granitoids proposed by Frost
et al. (2001) (Figure 7(c)). On the (Na2O + K2O − CaO) vs.
SiO2 diagram (Figure 7(d)), the studied granites are
alkali-calcic, plotting into the overlapping field between
A- and S-type granites. Moreover, the REE patterns and
trace elements are similar to the Ca. 26 Ma A-type
granite in Bu Khang Dome (Figure 6 (a, b)).

The A-type granites are generally considered to be
derived from relatively anhydrous, high-temperature
magmas (Clemens et al. 1986). Based on the absence of
older inherited zircons, it is inferred that the Salei gran-
ites had a high initial magmatic temperature. Zircon
saturation temperatures have been calculated for the
most felsic, fractionated rocks to help understand their

Figure 6. (a) Chondrite-normalized REE diagram (Boynton 1984) and (b) primitive-mantle-normalized trace earth diagram (Sun and
McDonough 1989) for the Salei granites of northern Laos.
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petrogenesis (Watson 1979; Watson and Harrison 1983).
The calculated temperatures are between 770°C and
785°C (Supplementary Table 3, the M values are range
from 1.34 to 1.41), lower than the average temperature
of A-type granites. As granites undergo fractional crystal-
lization, Zr contents generally decrease. This occurs
because the melt becomes more felsic and the tempera-
ture falls, resulting in decreased Zr solubility and preci-
pitation, and the overall removal of zircon (Watson
1979). Therefore, the relatively low zircon saturation
temperatures and high SiO2 contents of these samples
are consistent with the hypothesis that zircon was pre-
cipitating and being removed from the evolving melts.

Previous studies have sub-divided the A-type gran-
ites into peralkaline A-type and aluminous A-type, there
should be a pronounced difference in the geochemical
compositions of these two A-types. The aluminous
A-type granites typically have higher Al2O3 contents
(> 12%) and A/CNK values (> 0.95) than peralkaline
A-type granites (Qiu et al. 2000). The Salei granites
have relatively high Al2O3 contents (12.5–12.8 wt. %)
and A/CNK values (1.00–1.04), indicating that they are
typical aluminous A-type granites.

Although A-type granites can be found in various
continental and oceanic environments, in terms of tec-
tonics they form mainly in extensional within-plate

settings (e.g. continental rifts and oceanic islands) and
post-collisional orogenic zones (Bonin 2007). According
to Eby’s (1990, 1992) statistical study on A-type granites
worldwide, there is no clear boundary between within-
plate A1-type and post-collisional A2-type granites,
which exist along a continuous spectrum termed
‘anorogenic granites’. Despite this, A-type granites,
including post-collisional A2-type, within-plate A1-
type, and anorogenic granites that correspond to
neither A1- or A2-type, always represent continent–
continent post-collisional orogenic processes, and
their occurrence implies either an anorogenic or non-
compressive setting at the end of an orogenic cycle
(Dargahi et al. 2010). On the Nb–Y–3Ga and Ce/Nb
versus Y/Nb discrimination diagrams (Figure 8(a, b)),
data for the Salei granites are plotted in the A2-type
field. In addition, data for these granites plot in the
post-collisional and within-plate granite fields on
the tectonic discrimination diagrams of Pearce et al.
(1984) (Figure 9(a, b)), indicating a post-collisional or
within-plate setting during their formation.

Whole-rock major elements show that the samples
are peraluminous high-K calc-alkaline granite, and the
rare earth and trace element patterns are typical of
A-type within-plate granites. The geochemical charac-
teristics of the Salei pluton are similar to the A-type

Figure 7. Discrimination diagrams for A-, I-, and S-type granites showing data of the Salei granites. (a) K2O/MgO vs. 10,000Ga/Al
diagram; (b) FeOT/MgO vs. 10,000Ga/Al diagram; (c) FeOT/(FeOT + MgO) vs. SiO2 diagram; and (d) (Na2O + K2O − CaO) vs. SiO2

diagram. (a) and (b) are after Whalen et al. (1987); (c) and (d) are after Frost et al. (2001).
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granite of the Bu Khang Dome (26–24 Ma; Nagy et al.
2000), located 100 km southeast of the Salei pluton also
within the Truong Son Belt. The A-type granites of the
Bu Khang Dome also indicate that the Indochina Block
has experienced intraplate extension since 26 Ma
(Figure 9(a, b)).

5.2. Petrogenesis of the granites

As mentioned above, the Salei granites show typical
A-type granite affinities. Several petrogenetic models
have been proposed for the origin of A-type granites,
including: (1) the partial melting or direct fractionation
of mantle-derived basaltic magma (Eby 1990, 1992; Kerr
and Fryer 1993; Frost and Frost 1997); (2) partial melting
of felsic crust (e.g. Clemens et al. 1986; Creaser et al.
1991; Patiño Douce and Beard 1995; King et al. 1997;
Patiño Douce 1997); and (3) a combination of crust-
derived felsic magma and mantle-derived mafic

magma (e.g. Foland and Allen 1991; Frost and Frost
1997; Mingram et al. 2000).

The Salei granites have high SiO2 and low MgO
contents, which according to Taylor and Mclennan
(1995) cannot be produced directly by partial melting
of mantle-derived material, as this would generate
mafic and/or intermediate magmas (Hofmann 1988;
Barker et al. 1995). The extensive fractionation of man-
tle-derived melts is also an unlikely scenario, as A-type
granites produced in this way would be closely asso-
ciated with large volumes of coeval mafic and/or inter-
mediate igneous rocks (Turner et al. 1992; Litvinovsky
et al. 2002), which is not the case for the Salei granites.
In addition, the estimated temperatures for the magma
are less than 850°C, which contradicts the involvement
of a mantle-derived high-temperature magma during
the generation of the Salei granites.

Previous studies have proposed that the dehydration
melting of calc-alkaline granitoids (granodiorite) at low
pressures (4 kbar) and high temperatures (950°C) in the

Figure 8. (a) Nb–Y–3Ga and (b) Ce/Nb vs. Y/Nb diagrams for discriminating A1- and A2-type granites, showing data of the Salei
granites (after Eby 1992). The A1-type represents within-plate granites, while the A2-type represents post-collision granites.

Figure 9. Tectonic discrimination diagrams for the Salei granites. VAG (volcanic-arc granites), ORG (ocean-ridge granites), WPG
(within-plate granites), syn-COLG (syn-collision granites) (after Pearce et al. 1984; Pearce 1996).
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shallow crust (depths ≤ 15 km, such as in the middle to
lower crust) is a likely source of A-type granites (Skjerlie
and Johnston 1993; Patiño Douce 1997). Prominent
negative Sr anomalies, coupled with high LREE and
flat HREE patterns [(Gd/Yb)N = 0.8–1.0] for the Salei
granites (Figure 6(b)) indicate that plagioclase was pre-
sent and garnet was absent in the source, arguing
against the generation of these magmas in the lower
crust (Patiño Douce and Beard 1995; Watkins et al.
2007). Considering the old basement of the Indochina
Block, a purely crustal origin is also untenable for the
A-type Salei granites, regardless of the nature of the
middle to upper crust in the study area. The Salei
granites have much younger TDM2(Hf) (~ 1.4–1.2 Ga)
and TDM2(Nd) (~ 1.7 Ga) model ages than those of the
Precambrian meta-igneous basement rocks (Lan et al.
2003). As such, the Proterozoic basement rocks of the
Indochina Block cannot be the sole candidates for the
source.

Based on the Sm–Nd isotope composition of base-
ment rocks of the Indochina Block, there may have
been a two-stage crust-forming event in the Indochina
Block (Lan et al. 2003; Figure 10), with the first stage
occurring during 2.4–1.8 Ga (Figure 10(a), solid lines)
and the second during 2.1–1.2 Ga (Figure 10(a), dotted
lines) (av. = 1.5 Ga, mainly 1.45–1.35 Ga; Lan et al. 2003).
The TDM2(Nd) model ages for the Salei granites are all
~ 1.7 Ga (Supplementary Table 4), while the TDM2(Hf)
model ages are between 1.4 and 1.2 Ga. Clearly, the
protolith of the Salei granites belongs to basement
rocks corresponding to the second crust-forming stage
of the Indochina Block. However, on the (87Sr/86Sr)i
versus εNd(t) diagram (Figure 10(b)), data for the Salei
granites plot outside the field defined by basement
rocks from the Indochina Block, indicating the addition

of mantle material into the magma source of the Salei
pluton. Generally, mantle material is added to a granitic
magma in two ways: direct mixing between mantle-
derived mafic magma and crust-derived felsic magma,
or a mixed magma source derived from partial melting
of both juvenile crust from an underplated mantle and
ancient crust. Dark mafic enclaves are not present in the
Salei pluton, and this observation, combined with the
extremely low MgO contents (0.06–0.15 wt.%), indicates
that the direct mixing between mantle-derived mafic
magma and crust-derived felsic magma could be ruled
out in the petrogenesis of these granites. Therefore, the
magma source for the Salei granites was mainly the
Mesoproterozoic basement rocks of the Indochina
Block, mixed with a small proportion of mantle-derived
juvenile crust. This view is consistent with the intrusion
of mantle material into the crust during the Cenozoic
(Lan et al. 2000).

5.3. Geodynamic implications

The Cenozoic potassic magmatic rocks from eastern
Tibet and the Indochina Block can be sub-divided into
an early phase from ca. 40 to 24 Ma (Chung et al. 1998;
Wang et al. 2001, 2002; Lu et al. 2012) and a later phase
from ca. 20 to 0 Ma (Turner et al. 1993, 1996; Chung
et al. 1998; Nagy et al. 2000; Wang et al. 2001, 2002).

The mechanism of magma generation for the early
Cenozoic potassic and ultrapotassic magmatic rocks in
eastern Tibet and the Indochina Block is debated, and
the following geodynamic models have been proposed:
(1) Eastward continental under-thrusting of India, lead-
ing to fluid infiltration into the overlying mantle wedge
and subsequent melting (Wang et al. 2001). (2)
Movement along the Ailaoshan–Red River Shear Zone

Figure 10. (a) εNd(t) vs. age diagram and (b) εNd(t) vs. (
87Sr/86Sr)i diagram for the Salei granites. Data for 26–23 Ma granitoids of

central Vietnam and 37–32 Ma felsic intrusions of the Lanping–Simao area are from Liu et al. (2012). The Nd isotopic evolution
diagram is after Lan et al. (2003) and data for basement rocks of the Indochina Block are from Lan et al. (2003).
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and resultant tectonic decompression (Leloup et al.
1995, 1999; Liang et al. 2006, 2007). (3) Convective
removal of thickened lower continental lithospheric
mantle (Chung et al. 1998; Zhao et al. 2009; Lu et al.
2013).

The eastward subduction of the Neotethyan slab
under the Yangtze Craton and Indochina Block is poorly
understood because of a lack of convincing geological
evidence (Deng et al. 2013). As a result, the geodynamic
model proposing the eastward continental under-
thrusting of India, leading to fluid infiltration into the
overlying mantle wedge, can be a high degree of
uncertainty. In addition, recent extensive geochronolo-
gical studies constraining the timing of ductile shearing
and the emplacement of potassic–ultrapotassic rocks
have shown that ductile shearing post-dates the mag-
matism (Lu et al. 2012). Therefore, it is unlikely that this
shearing and continental under-thrusting generated
the potassic–ultrapotassic magmatism.

The formation of widespread late Eocene to early
Oligocene potassic felsic intrusions in northwestern
Yunnan is ascribed to lithospheric thinning and the
following asthenospheric upwelling (Lu et al. 2013).
The dominant TDM2(Hf) values of these felsic intrusions
are between 1.4 and 1.0 Ga, similar to those of the
A-type Salei granites (Figure 4), indicating that they
may share a similar petrogenetic history. Therefore, we
prefer the removal of lower lithospheric mantle as the
trigger for the onset of early phase (ca. 40–24 Ma)
Cenozoic potassic magmatism in eastern Tibet and the
Indochina Block.

The peak TDM2(Hf) model ages of granites from the
Indochina Block are consistent with those of the
northern Qiangtang and Changdu–Simao blocks
(Wang et al. 2016; this study). Combined with pre-
vious work (Sengör 1979; Li et al. 1995, 2006; Wang
et al. 2016, 2018), our study further confirms the
concept of a single Changdu–Simao–Indochina Block.
While the 26–24 Ma potassic granitoids in the
Indochina block belong to the early phase (40–24) of
the potassic magmatism along the eastern Tibetan
plateau. However, the 26–24 Ma A-type granite indi-
cating the extension tectonic setting in the inner
section of Indochina block, contrast to the transpres-
sional tectonics implied by the contemporaneous
potassic magmtism along the eastern Tibetan plateau
(Wang et al. 2000; Wang et al. 2001). In this respect, it
is suggesting that the plastic deformation occurred in
the inner section of the united Changdu–Simao–
Indochina Block during the Late Oligocene to Early
Miocene.

During the Cenozoic, the Indochina Block has been
subjected to huge compressional stresses resulting from

the collision between India and Eurasia, leading to thick-
ening of the lithospheric mantle. Gravitational equilibrium
then resulted in the delamination of this thickened litho-
spheric mantle. Asthenospheric upwelling following this
delamination served as an efficient trigger mechanism for
the partial melting of both juvenile and ancient crust
(Figure 11). This mixed melt was then emplaced in the
shallow crust and formed the A-type Salei granite.

6. Conclusions

This study has allowed us to reach the following
conclusions.

(1) The 26–24 Ma Salei granites in northern Laos are
A-type granites and can be further classified as
A2-type.

(2) Geochemical and isotopic data suggest that the
A-type Salei granites were derived mainly from
the partial melting of Mesoproterozoic basement
rocks from the Indochina Block, along with small
volumes of mantle-derived juvenile crust.

(3) The generation of the late Oligocene Salei gran-
ites is attributed to the convective removal of
thickened lower continental lithospheric mantle.

(4) Formation of the A-type Salei granites in the
Indochina Block corresponds to Cenozoic exten-
sion in the interior of this block.
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Figure 11. Schematic model of the genesis of the A-type Salei
granites.
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Highlights

(1) The 26-24 Ma Salei granites in the north Laos
belong to the A2 sub-type of within-plate
granites.

(2) The generation of the Late Oligocene Salei gran-
ites is attributed to the convective removal of
thickened lower continental lithospheric mantle.

(3) The Salei A-type granites were emplaced during
Cenozoic extension of the inner section of the
Indochina block.
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