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A B S T R A C T

Wolframite is the main ore mineral in the vein-type tungsten deposits of southern China. Much progress has been
made on the characteristics of the mineralizing fluids, but the mechanisms of wolframite precipitation remain
poorly understood. Hydraulic fracturing driven by high-pressure fluids is a common mechanical process during
magmatic-hydrothermal transition, but it is uncertain whether and how this mechanical process may affect
chemical equilibrium and cause wolframite precipitation. This paper examines how a hydraulic fracturing
process affects solubility of tungsten in CO2-saturated NaCl solutions using a hydro-mechanical numerical model
coupled with a multi-component thermodynamic model. The thermodynamic model presented here is in the
system of Fe-W-Cl-Na-C-O-H. The modeling results indicate that fluid pressure exerts a significant influence on
chemical equilibrium where CO2 solubility in NaCl solutions decreases with decreasing fluid pressure and pH
increases with decreasing fluid pressure. An increase in pH reduces the concentrations of the dominant iron-
bearing species (FeCl20) and the dominant tungsten-bearing species (HWO4

−) in fluids. Tungsten solubility in
fluids reaches tens of ppm. Over ten fluctuations of fluid pressure are identified in the numerical experiments of
hydraulic fracturing. These pressure fluctuations cause a decrease in solubility of tungsten by over 30% of the
maximum solubility. Repeated drops of fluid pressure during hydraulic fracturing processes cause CO2 loss and
could be efficient processes for precipitating wolframite from mineralizing fluids. These findings may also offer
an insight into the precipitation mechanisms of other metals from CO2-bearing hydrothermal fluids.

1. Introduction

Magmatic-hydrothermal fluids are efficient agents of metal trans-
port and form ore deposits with economically exploitable tungsten, tin,
copper, and gold (Černý et al., 2005). How these metals are precipitated
from magmatic-hydrothermal fluids is critical for understanding the ore
forming processes (e.g. Audétat et al., 1998; Heinrich, 1990; Heinrich
et al., 2005; Seward, 1997; Williams-Jones and Migdisov, 2013).
Mixing of magmatic fluids and meteoric fluids is an efficient way to
precipitate ore minerals (e.g. Audétat et al., 1998; Fekete et al., 2016;
Heinrich, 2007). However, release of hydrothermal fluids from a vo-
latile-rich magma suppresses free convection and prevents meteoric
fluids from mixing with magmatic fluids close to the magma (e.g.
Gerdes et al., 1998; Hanson, 1995; Weis et al., 2012). In this case, other
possible mechanisms of precipitating ore minerals include simple

cooling, phase separation, fluid-rock interaction, and hydraulic frac-
turing (e.g. Gibert et al., 1992; Korges et al., 2017; Lecumberri-Sanchez
et al., 2017; Ni et al., 2015; Polya, 1990). The efficiency of metal
precipitation reached by simple cooling is severely limited by the low
rate of heat transfer to surrounding rock (Barton and Toulmin, 1961;
Heinrich et al., 2005). Phase separation is generally triggered in shal-
lower hydrothermal systems where fluid pressure decreases to the two-
phase boundary (e.g. Korges et al., 2017). Fluid-rock interaction re-
quires specific chemical disequilibrium between hydrothermal fluids
and rocks (e.g. Lecumberri-Sanchez et al., 2017). Hydraulic fracturing
may also cause metal precipitation from CO2-bearing hydrothermal
fluids (e.g. Polya, 1990), but it remains poorly understood how this
fluid-driven mechanical process affects chemical equilibrium.

Wolframite is the main ore mineral in the vein-type tungsten de-
posits of southern China, which is a world-class tungsten province (Mao
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et al., 2013). How wolframite in these deposits is precipitated from
hydrothermal fluids is highly disputed (e.g. Ni et al., 2015; Wei et al.,
2012; Xiong et al., 2017). Wei et al. (2012) proposed that mixing of
magmatic fluids and meteoric fluids is the dominant mechanism for
precipitating the wolframite in the Xihuashan tungsten deposit. How-
ever, many other hydrogen and oxygen isotopic measurements suggest
that the mineralizing fluids were not mixed with meteoric fluids at the
main mineralization stage (e.g. Gong et al., 2015; Liu et al., 2011; Mu
et al., 1981; Wang et al., 2007; Zhu et al., 2015). Ni et al. (2015) argued
that simple cooling caused precipitation of wolframite, but heat transfer
from hydrothermal fluids to wallrock is too slow to precipitate wol-
framite efficiently (cf. Barton and Toulmin, 1961). The third me-
chanism is CO2 escaping and pH increase (Wang et al., 2012; Wang
et al. 2013b; Xiong et al., 2017). Recent infrared micro-thermometric
studies found CO2 from fluid inclusions in wolframite (e.g. Chen et al.,
2018; Li et al., 2018). Previous structural and geochemical studies
suggest high-pressure fluids are required for triggering fracture initia-
tion and propagation and the fluctuations of fluid pressure are recorded
by fluid inclusions (e.g. He and Xi, 1988; Wang et al., 2008; Xi et al.,
2008; Yu, 2004). Thus, it is necessary to examine whether and how CO2

loss accompanying a decrease in fluid pressure causes precipitation of
wolframite.

The thermodynamic model proposed by Wood and Samson (2000)
provides a fundamental understanding of the solubilities of ferberite
and scheelite in CO2-free aqueous NaCl solutions. In this study, a
thermodynamic model including CO2 and its reactions in NaCl aqueous
solutions was developed. An important difference from the results in
Wood and Samson (2000) is that tungsten solubility in the models
presented here decreases with fluid pressure. It was found that fluid
pressure fluctuations during a hydraulic fracturing process could pre-
cipitate a great part of tungsten dissolved in hydrothermal fluids.

2. Geological background

The South China tectonic block (SCB) consists of the Cathaysian
Block and the Yangtze Craton (Fig. 1). The tectonic setting in the SCB
was largely under extension during the Late Mesozoic (J2-K2) (Zhou
et al., 2006), during which time NE-trending extensional lithospheric
belts and deep faults controlled large-scale magmatic activities and
related tungsten mineralization (Huang and Jiang, 2014; Mao et al.,
2013; Zhao et al., 2017b). The tungsten mineralization in this region is
dominated by quartz-vein, skarn, and greisen types (Zhao et al., 2017b).
The vein-type tungsten deposits are the subject of this study.

The tungsten-bearing quartz veins are hosted by the Neoproterozoic
to Jurassic strata and granitic rocks and extend a depth of approxi-
mately 1000m (see Fig. 2) (Gu, 1984; Zhu et al., 1981). Wolframite is
the main ore mineral in the veins (Fig. 3), and the gangue minerals have
quartz, feldspar, muscovite, calcite, and tourmaline (Chen et al., 1989).

It is interpreted that the mineralizing fluids have a magmatic origin at
the main mineralization stage, and then were mixed with meteoric
waters at late stages (Zhu et al., 2014). A few lines of evidence suggest
that these deposits may have a genetic relationship to highly fractio-
nated granitoids at deeper levels (cf. Fang et al., 2015; Legros et al.,
2018; Wang et al., 2017; Wu et al., 2017; Zhao et al., 2017b).

The quartz veins in most tungsten deposits are sub-verticall and
have a preferred orientation of approximately east–west striking
(Fig. 2) (Zhu et al., 1981). The sheeted veins often show a vertically
morphological zonation that the thin veins at shallower levels become
thicker downwards (Liu et al., 2014; Liu and Ma, 1993).

The mineralizing fluids are NaCl-H2O ± CO2 systems. The fluid
inclusions trapped by ore and gangue minerals have homogenization
temperatures from 160 °C to 390 °C and salinities from 1 to 10wt%
NaCl equivalent. The mineralization pressures recorded by fluid inclu-
sions have a range from 20 to 160MPa with maximum range of
75–160MPa (Gong et al., 2015; Liu et al., 2011; Mu et al., 1981; Ni
et al., 2015; Wang et al., 2007; Wang et al. 2013a; Wei et al., 2012; Xi
et al., 2008; Xiong et al., 2017; Zhou et al., 2017; Zhu et al., 2015). CO2-
bearing fluid inclusions are recorded in wolframite, topaz, and quartz
(e.g. Chen et al., 2018; Li et al., 2018; Wang et al., 2012; Xi et al., 2008;
Xiong et al., 2017; Zhou et al., 2017). Also, fluid inclusions in quartz
have high concentrations of W, Fe, Mn, and other ore elements (Huang
et al., 2013), suggesting that these inclusions have trapped the miner-
alizing fluids.

In the next sections, a thermodynamic model is established to ex-
amine how fluid pressure affects chemical equilibrium and tungsten
solubility in NaCl-H2O-CO2 system. Wood and Samson (2000) proposed
a thermodynamic mode for understanding the mechanisms pre-
cipitating ferberite and scheelite from CO2-free NaCl solutions. Some
reactions in their models and CO2-related reactions are considered to-
gether in our models. A hydraulic fracturing process is also simulated to
constrain the evolution of fluid pressure using finite element based
numerical experiments.

3. Methods

3.1. Thermodynamic modeling of a W-bearing NaCl-H2O-CO2 system

3.1.1. Species and reactions in the models
Wolframite ([Fe,Mn]WO4) in tungsten deposits in the world is often

a complete solid solution between ferberite (FeWO4) and hübnerite
(MnWO4) (e.g. Harlaux et al., 2018; Pačevski et al., 2007; Sakamoto,
1985; Tindle and Webb, 1989). Both Fe-dominated and Mn-dominated
wolframite are identified in the vein-type tungsten deposits of southern
China (e.g. Xie et al., 2017; Zhang, 1981; Zhang et al., 2018). Current
thermodynamic data are insufficient to calculate the equilibrium con-
stant of MnWO4 dissolution (cf. Robie and Hemingway, 1995); thus,
MnWO4 was ignored and only the dissolution of FeWO4 was considered
in the models (see reaction 3 in Table 1). Since sheelite (CaWO4) is a
minor ore mineral in the vein-type tungsten deposits of southern China,
CaWO4 and Ca-related reactions are also absent in the models.

The main tungsten species in NaCl aqueous solutions are H2WO4
0,

HWO4
−, WO4

2−, NaHWO4
0, and NaWO4

− (Redkin and Kostromin,
2010; Wood and Samson, 2000). These species and their reactions with
H+ or Na+ were incorporated in the models.

Hydrothermal fluids in the crust are generally of low oxidation
potential, and dissolved Fe is predominantly in the +2 oxidation state
(Heinrich and Seward, 1990). It is reported that the two-mica granite in
the Dajishan tungsten deposit has an oxygen fugacity of = −logf 15O2
(Jiang et al., 2004). The muscovite granite and the lepidolite granite in
the Dahutang tungsten deposit have a lower oxygen fugacity

< −log f 15O2 (Han et al., 2016). Under these reduced conditions, the
amount of Fe3+ in hydrothermal fluids is negligible compared to that of
Fe2+ (cf. Wood and Samson, 2000). Thus, Fe2+ and its reactions with
Cl− and OH– were considered in the models.Fig. 1. Distribution of the tungsten deposits in southern China.

X. Liu et al. Ore Geology Reviews 102 (2018) 44–58

45



Species of oxidized carbon dissolved in water are dominated by
carbonate ion (CO3

2–), bicarbonate ion (HCO3
–), and dissolved CO2 (aq)

(Manning et al., 2013). These oxidized carbon species interact via two
stepwise dissociation reactions (see reactions 15 and 16 in Table 1).

21 species and 16 reactions in aqueous solutions were investigated
in the models (Table 1). 21 equations were required to be solved for
determining the concentration of the 21 species. The equilibrium con-
stants of the 16 reactions in Table 1 were calculated using the R
package CHNOSZ developed by Dick (2017). Thus, 16 non-linear
equations were established from these 16 reactions. The other five
equations were obtained from the charge and mass balance (Table 2).
Note that species concentrations were used in the balance equations
and species activities were used in the reactions (see Section 3.1.2). The
last equation in Table 2 was established based on the assumption that
CO2 in NaCl solutions was saturated. The CO2-bearing three-phase
fluids inclusions (liquid water, liquid CO2, and gaseous CO2) at room
temperature have been identified in several vein-type tungsten deposits
of southern China (e.g. Wang et al., 2012; Xi et al., 2008; Xiong et al.,
2017; Zhou et al., 2017). The mole fractions of CO2 in CO2-bearing fluid
inclusions in the Dajishan and Pangushan tungsten deposits have a
range of 0.06–0.76 and 0.22–0.46, respectively (Wang et al., 2012; Xi
et al., 2008). Fig. 4 shows the mole fraction of CO2 in CO2-saturated
NaCl solutions under the temperature, pressure, and salinity conditions

Fig. 2. (a) A planar view of the Piaotang tungsten deposit (revised from Shan, 1976); (b) A cross section of the Piaotang tungsten deposit along the section line A-A′ in
Fig. 1a.

Fig. 3. Photos of the veins in the III vein set in the Piaotang tungsten deposit. (a) The subvertical veins at 328m level have a thickness of 10–20 cm. These veins
envelop breccias that were separated from surrounding wallrock. View to East. (b) Needle-like wolframite crystallized in a thick vein at 268m level. View upwards.
Abbreviations: br, breccias; Qtz, quartz; wol: wolframite.

Table 1
The equilibrium constants (LogK) of the 16 reactions employed in this study.

Number Reaction LogK (350 °C, 100MPa)

1 H++HWO4
−=H2WO4

0 3.32
2 H++WO4

2−=HWO4
− 6.88

3 FeWO4(s)= Fe2++WO4
2− −15.21

4 Fe2++Cl–=FeCl+ 2.34
5 Fe2++2Cl–=FeCl20 4.55
6 H++Cl–=HCl0 1.19
7 Na++Cl−=NaCl0 0.79
8 H2O=H++OH– −10.66
9 Na++H2O=NaOH0+H+ −10.25
10 Fe2++H2O=FeOH++H+ −4.49
11 Fe2++H2O=FeO0+ 2H+ −10.23
12 Fe2++2H2O=HFeO2

−+3H+ −17.13
13 Na++HWO4

−=NaHWO4
0 0.15

14 Na++WO4
2−=NaWO4

− 2.93
15 CO2 (aq)+H2O=HCO3

–+H+ −8.30
16 HCO3

–=CO3
2–+H+ −11.06

The LogK of the reaction 3 was calculated using the function and the thermo-
dynamic data in Wood and Samson (2000).
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of mineralizing fluids in the vein-type tungsten deposits of southern
China. The mole fractions of CO2 are generally lower than 0.4. Thus, the
assumption of CO2 saturation in hydrothermal fluids is plausible. CO2

solubility in NaCl aqueous solutions was reproduced from the CO2 so-
lubility model proposed by Mao et al. (2013). These 21 nonlinear
equations were solved using the R package rootSolve developed by
Soetaert (2016).

3.1.2. Activity coefficients of charged and neutral species
The activity of a species in electrolyte solutions is its effective

concentration and equals its concentration multiplied by its activity
coefficient. The activity coefficients of electrically charged species in
NaCl aqueous solutions are often calculated by an extended Deby-
Hückel equation (B-dot equation) proposed by Helgeson (1969) (e.g.
Gibert et al., 1992; Mikucki, 1998; Wood and Samson, 2000):

=
−

+
+logγ

Az I
aB I

bI
1 ̇

̇
i

i
2

(1)

in which γi is the activity coefficient of the ith ion, zi is the charge
number of the ion, I is the ionic strength, A and B are two parameters
related to the dielectric constant and density of water, and a ̇ and b ̇ are
temperature-dependent constants. The ionic strength of a solution is a
function of the concentrations of all the ions in that solution:

∑=
=

I c z1
2 i

n

i i
1

2

(2)

in which I is the molar ionic strength in mol/kg and ci is the molar
concentration of the ith ion. The only species-specific parameter re-
quired in equation (1) is the electrical charge. This treatment may be
incorrect, but its errors are negligible compared to those caused by
other sources (Zhu et al., 2017). Activity coefficients of charged species
were calculated by the R package CHNOSZ (Dick, 2017). The ionic
strength I had an initial value of half of the molar concentration of NaCl
in solutions and was updated in an iterative method until the absolute
error was less than 0.01.

Neutral species are considered to mix ideally in the solutions in
Deby-Hückel type models (cf. Walther, 1997); therefore, activity coef-
ficients of neutral aqueous species are often assumed to be unity (e.g.
Gibert et al., 1992; Helgeson et al., 1981; Wood and Samson, 2000).
However, when neutral species are high-concentration, the non-ideal
interactions between neutral species and charged species may be con-
siderable (cf. Walther, 1997). CO2 is highly concentrated if CO2 is sa-
turated in NaCl aqueous solutions (see Fig. 4). The empirical equation
fitted by Drummond (1981) was used to reproduce the activity coeffi-
cients of CO2 (see equation A-10 in Spycher and Pruess, 2005). Fig. 5
shows that the activity coefficient of CO2 tends to unity when the
salinity approaches zero. The activity coefficients of the other neutral
species in our models were assumed to unity given that reliable data for
their activity coefficients are not available.

Table 2
Mass and charge balance constraints used in the thermodynamic model.

Charge balance [H+]+ [Na+]+ [FeCl+]+ 2[Fe2+]+ [FeOH+]= [HWO4
−]+ 2[WO4

2−]+ [Cl−]+ [OH–]+ [HFeO2
−]+ [HCO3

–]+ 2[CO3
2–]

Cl mass balance ΣCl=[Cl−]+ [HCl0]+ [NaCl0]+ [FeCl+]+ 2[FeCl20]
Na mass balance ΣNa=[Na+]+ [NaCl0]+ [NaOH0]+ [NaWO4

−]+ [ NaHWO4
0]

Stoichiometric dissolution (ΣFe= ΣW) [H2WO4
0]+ [HWO4

−]+ [WO4
2−]= [FeCl+]+ [FeCl20]+ [Fe2+]+ [FeOH+]+ [FeO0]+ [HFeO2

−]
Fix CO2 CO2 reaches the solubility at the given temperature, pressure, and salinity

CO2 solubility in NaCl aqueous solutions was reproduced using the model proposed by Mao et al. (2013).

Fig. 4. The solubility (a) and mole fraction (b) of CO2 in NaCl aqueous solutions reproduced from the model proposed by (Mao et al., 2013). The solubility of CO2

decreases with increasing salinity of the solutions. This is called the salting-out effect (Dubacq et al., 2013; Nighswander et al., 1989).

Fig. 5. Activity coefficients of CO2 in NaCl aqueous solutions reproduced from
the model developed by Drummond (1981).
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3.2. Numerical modeling of hydraulic fracturing

Hydraulic fracturing is a fluid-to-solid coupling where a change in
fluid pressure or fluid mass alters the volume of a porous material and
produces strains (Wang, 2000). In the Navier-Coulomb criteria, rock
failure occurs by hydraulic fracturing when the differential stress −σ σ1 3
is less than four times tensile strength Ts and the effective minimum
principle stress = −σ σ P3

'
3 reaches-Ts (Cosgrove, 1995; Cox, 2010;

Sibson, 2004). σ σ, ,1 2 and σ3 denote the maximum principle stress, the
intermediate principle stress, and the minimum principle stress, re-
spectively. Positive normal stresses mean compression and negative
normal stresses represent tension in this study. Hydraulic fracturing
creates extensiontal fractures and veins and breccias in hydrothermal
systems (e.g. Barnhoorn et al., 2010; Beach, 1980; Bons, 2001;
Cosgrove, 2001; Cox, 2007; Jébrak, 1997; Plimer, 1987; Tsuchiya et al.,
2016). The fluid pressure fluctuations after hydraulic fracturing may be
recorded by fluid inclusions in veins (e.g. Rusk et al., 2004). Fracturing
driven by high pressure fluids may also trigger earthquakes (e.g. Miller
et al., 2004).

The orientation of the quartz veins in the tungsten deposits of
southern China indicates that their tension direction is approximately
north–south striking. Our previous study indicates that the maximum
principle stress σ1 was vertical and the intermediate principle stress σ2
was east–west striking (Liu et al., 2014). Structural analysis of the vein
arrays suggests that the initiation and propagation of the fractures were
triggered by high-pressure fluids (e.g. He and Xi, 1988; Wang et al.,
2008; Wei et al., 2015; Yu, 2004). In situ fragmentation textures in the
veins (Fig. 3a) suggests that the brecciation is fluid-assisted (cf. Jébrak,
1997). Fluid inclusions from several tungsten deposits also record high-
pressure fluids (e.g. Huang et al., 2006; Wang et al., 2007; Wang et al.
2013a Xi et al., 2008). Fluid-driven fracturing is modelled in this part to
examine the change of fluid pressure during a hydraulic fracturing
process and to be coupled to the thermodynamic model in Section 3.1.

The maximum pressures recorded in fluid inclusions were assumed
to reach lithostatic pressure levels (25MPa/km). Thus, the tungsten
deposits in southern China may form at a depth of 3∼6 km. A two-
dimension hydro-mechanical model at a depth of 4 km was built. The
model has a size of 100m x 100m (Fig. 6). X axis represents the or-
ientation normal to veins and Z axis is vertical. The coupling of rock
deformation and fluid flow in this study was governed by poro-elastic
constitutive equations and the diffusion equation of fluid pressure (see
Appendix). These simultaneous partial differential equations were
solved by an in-house finite element-based supercomputer simulator
named PANDAS (Li and Xing, 2015; Liu et al., 2017a; Xing and
Makinouchi, 2002). The yield criteria used in the models are the
Maximum Tensile Stress Criterion and the Mohr-Coulomb Criterion (see
Appendix).

Isothermal fluids were assumed to be injected into the bottom of the
models. The aim of this treatment is to save computational power and
focus on the influence of fluid pressure on tungsten solubility. High-
pressure fluids at 350 °C were used in the models and this temperature
is within the homogenization temperatures of the tungsten deposits.
The constitutive equations used in our models are independent on
temperature (see Appendix).

The fluid physical properties required in the models include fluid
density, compressibility, and viscosity. Mao et al. (2015) proposed a
predictive model that reproduces the single-phase density of NaCl-H2O-
CO2 fluid mixtures of all compositions from 273 to 1273 K and from 1 to
5000 bars within experimental uncertainty in most cases. Their model
was used to reproduce the fluid density and fluid compressibility in our
models. Current models for fluid viscosity of CO2-bearing NaCl aqueous
solutions are only valid at T≤ 60 °C, P≤ 300 bars (e.g. Bando et al.,
2004; Fleury and Deschamps, 2009; Islam and Carlson, 2012; Kumagai
and Yokoyama, 1999). Klyukin et al. (2017) developed an empirical
model for the viscosity of H2O-NaCl fluids at T≤ 1000 °C, P≤ 5000
bars, and salinity ≤100wt% NaCl. Their model was used to reproduce
the fluid viscosity in our models. Note that the fluid physical properties
above were fixed to a constant level but were varied in different nu-
merical experiments to examine their influences on hydraulic frac-
turing.

The fluids released from a CO2-bearing magma are early low-sali-
nity CO2-rich fluids followed by more saline CO2-free fluids (Baker,
2002; Holloway, 1976). The CO2-bearing fluid inclusions in wolframite
in the tungsten deposits have a salinity of 0.4–3.6 wt% NaCl equivalent
(Chen et al., 2018; Li et al., 2018), and 1–6wt% NaCl equivalent in
quartz (Wang et al., 2012; Xi et al., 2008). The CO2-free fluid inclusions
have a salinity up to 10wt% NaCl equivalent (e.g. Ni et al., 2015).
Thus, a salinity of 10 wt% NaCl equivalent was used in the numerical
experiments. This salinity is an upper limit of the fluid salinities above.

The quartz veins in the tungsten deposits of southern China are
hosted by low-porosity sandstone and slate, granite (Li, 1993; Zhang
et al., 2017; Zhao et al., 2017b). The rock in the models was assumed to
be unfractured and had an initial permeability of 10−16 m2. Equation
(A-8) in Appendix shows that the rock permeability decreases with the
effective normal stress before fracturing; therefore, the rock perme-
ability before fracturing was lower than the minimum permeability
(10−16 m2) required for advective heat transport (cf. Manning and
Ingebritsen, 1999). This treatment prevents heat transfer from hot
fluids to the rock and is consistent with the assumption of isothermal
fluids. The rock in our models has a Young's modulus of 60 GPa, a
Poisson's ratio of 0.2, and a tensile strength of 5MPa according to the
experimental data in Pariseau (2006), Gercek (2007), and Lockner
(1995), respectively. Table 3 shows the rock mechanical parameters
and the fluid properties used in the numerical experiments.

The finite element based numerical experiments were run in two
stages. At the first stage, a vertical compressive stress of 100MPa (σv)
was loaded at the top, a horizontal compressive stress of 50MPa (σh)
was loaded on the left and right sides of the model, and the bottom was
fixed vertically (Fig. 1). This corresponds to a horizontal-over-vertical
stress ratio of = 0.5σ

σ
h
v

. These boundary conditions formed an initial
extensional stress field at a depth of 4 km if a lithostatic gradient of
25MPa/km was assumed. At the second stage, the loaded stresses at the
first stage were maintained and fluids with a fixed pressure of 200MPa
were released at the bottom. A small amount of fluids was assumed to
exist in rocks before release of high-pressure magmatic fluids; thus the
model was initially unsaturated and had an initial fluid pressure of
10MPa. Fig. 7 shows the finite element meshes consisting of 39,200
elements and 59,643 nodes. A reference point shown in Fig. 7 was
chosen to show the change of the effective minimum principle stress
and the fluid pressure during a hydraulic fracturing process.

Six numerical experiments were conducted in this study and their
parameters are shown in Table 3. Fluid properties at 350 °C, 200MPa,

Fig. 6. A 2D geometric model of hydraulic fracturing at a depth of 4 km.
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and 10% wt% NaCl were used in the first numerical experiment (E1),
which was the reference experiment. Only one variable in the next five
numerical experiments (E2, E3, E4, E5, and E6) was varied based on E1
to examine the influences of fluid compressibility, fluid viscosity, the
initial fluid pressure, the horizontal stress, and the fixed fluid pressure
on hydraulic fracturing, respectively. The fluid pressure in the numer-
ical experiments was linked to the thermodynamic mode to investigate
how hydraulic fracturing affected chemical equilibrium and tungsten
solubility in hydrothermal fluids.

4. Modeling results

4.1. Influences of fluid compressibility on hydraulic fracturing

CO2 was saturated in the first numerical experiment (E1), while CO2

concentration in the second one (E2) was half of CO2 solubility in NaCl
solutions at the same temperature, pressure, and salinity with E1. Fluids
in E2 had a higher fluid density and a lower fluid compressibility than
those in E1. Fluid density has a minor influence on hydraulic fracturing
compared to fluid viscosity and fluid compressibility (e.g. Zhou and
Burbey, 2014). Therefore, differences between E1 and E2 were made to

show the influences of fluid compressibility on hydraulic fracturing.
Fig. 8 shows that the effective minimum principle stress at the re-

ference node decreased as fluid pressure increased in E1. The effective
mean normal stress was initially compressive and increased with fluid
pressure. The permeability at the reference node increased with the
effective mean normal stress and was lower than 10−16 m2 before
fracturing. The effective minimum principle stress reached the tensile
strength of 5MPa after 2.7 s when fluid pressure reached 167.95MPa.
The peak fluid pressure reached at the time when the reference node
yields is also called the breakdown pressure (Bunger et al., 2010). After
fracturing, the permeability increased to 2× 10−13 m2 and the fluid
pressure fluctuated significantly and decreased to 109.60MPa after
2.8 s. In PANDAS, the stresses become zero once they reach the shear or
tensile strength. In contrast, the tensile strength at the reference point
in E2 was satisfied after 0.84 s, earlier than in E1. After fracturing, fluid
pressure fluctuated from 156.33MPa to 121.42MPa.

4.2. Influences of fluid viscosity on hydraulic fracturing

The empirical model for fluid viscosity used in this study is in-
dependent on CO2 concentration. Previous viscosity measurements of
aqueous NaCl solutions with dissolved CO2 suggests that fluid viscosity
is positively correlated to CO2 concentration (e.g. Bando et al., 2004).
Thus, fluid viscosity in the third numerical experiment (E3) was in-
creased by 10% based on that in E1 and the other parameters remained
unchanged.

The effective minimum principle stress at the reference node in E3
was higher than that in E1 at any time before fracturing (Fig. 9). The
tensile strength in E3 was satisfied after 3.0 s, later than that in E1. The
fluid pressure at the reference node in E3 also shows significant fluc-
tuations after fracturing. The breakdown pressure in E3 is 167.99MPa,
slightly higher than than in E1. Fluid pressure in E3 decreased to
87.91MPa after 3.1 s.

4.3. Influences of the initial fluid pressure on hydraulic fracturing

The initial fluid pressure is another uncertain variable when high-
pressure fluids are released. The initial fluid pressure in the fourth
numerical experiment (E4) was increased to 15MPa based on the first
one and the other parameters kept unchanged.

The effective minimum principle stress at the reference node in E4
was always larger than that in E1 before fracturing and the tensile

Table 3
Rock mechanical and hydraulic parameters in the numerical experiments.

Parameters(unit) E1 E2 E3 E4 E5 E6

Porosity (%) 1.0
Permeability (m2) 10−16

Young’s Modulus (GPa) 60
Poisson ratio 0.2
Angle of internal friction (°) 30
Cohesion (MPa) 60
Tensile strength (MPa) 5
Fluid temperature (°C) 350
Fixed fluid pressure (MPa) 200 190
Horizontal stress (MPa) 50 50 50 50 55 50
CO2 concentration (mol/kg H2O) 14.92 7.46 14.92 14.92 14.92 14.92
Initial fluid pressure (MPa) 10 10 10 15 10 10
Fluid salinity (w.t.%) 10 10 – 10 10 10
Fluid density (kg/m3) 883 899 883 883 883 850
Fluid viscosity (× ∙−10 Pa s4 ) 1.28 1.28 1.41 1.28 1.28 1.28

Fluid compressibility (× − −10 Pa10 1) 9.95 7.90 9.95 9.95 9.95 9.95

E1, E2, E3, E4, E5, E6 refer to the six numerical experiments.

Fig. 7. The finite element meshes used in the numerical model of hydraulic fracturing. A reference node close to the fixed-pressure fluid source was chosen to
illustrate the evolution of the stresses and the fluid pressure during a hydraulic fracturing process.
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strength was satisfied after 3.3 s, later than that in E1 (Fig. 10). The
breakdown pressure in E4 was 171.23MPa, followed by significant
fluctuations. The fluid pressure decreased to 120.90MPa after 3.5 s.

4.4. Influences of the horizontal stress on hydraulic fracturing

The horizontal stress is a critical parameter affecting the initial
stress field (e.g. Rutqvist et al., 2013). This parameter was increased to
55MPa in the fifth numerical experiment (E5) to study how a higher
horizontal stress affects hydraulic fracturing.

The reference node in E5 had a higher initial effective minimum
principle stress than that in E1 (Fig. 11). The decrease of the effective
minimum principle stress in E5 was slower than that in E1 and the
tensile strength was satisfied after 7.2 s. The fluid pressure fluctuated
from 175.15MPa to 122.32MPa.

4.5. Influences of the fixed fluid pressure on hydraulic fracturing

The last parameter analyzed in this study is the fixed fluid pressure
at the bottom of the model. The fixed fluid pressure in the sixth nu-
merical experiment (E6) was decreased to 190MPa and the other
parameters remained unchanged compared to those in E1.

The tensile strength of the reference node in E6 was satisfied after
4.4 s, later than that in E1 (Fig. 12). The breakdown pressure was
164.17MPa and then the fluid pressure fluctuated to 92.01MPa.

4.6. Chemical equilibrium of a tungsten-bearing NaCl-H2O-CO2 system

Three concentrations of CO2 in NaCl solutions at 350 °C were used
in solving the nonlinear equations in Section 3.1. The first concentra-
tion is CO2 solubility, the second one is 50% of CO2 solubility, and the
third is 10% of CO2 solubility (Fig. 13). pH varies from 3.3 to 4.7 and
decreases with increasing fluid pressure and the concentration of CO2 in

Fig. 8. The change of the effective minimum principle stress (a), the effective mean normal stress (b), the fluid pressure (c), and the permeability (d) at the reference
node in the first (E1) and second (E2) numerical experiments. The only different variable between E1 and E2 was fluid compressibility. After the effective minimum
principle stress reached the rock tensile strength of 5MPa, the stresses became zero, the fluid pressure show a significant fluctuation, and the permeability increased
by 2000 times. The tensile strength of the reference node was satisfied earlier in E2 than that in E1.

Fig. 9. The effective minimum principle stress (a), the effective mean normal stress (b), the fluid pressure (c), and the permeability (d) at the reference node against
time in the first (E1) and third (E3) numerical experiments. The only different variable between E1 and E3 was fluid viscosity. The tensile strength of the reference
node was satisfied later in E3 than that in E1.
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solutions. Tungsten solubility increases with fluid pressure and the
concentration of CO2 in solutions and changes from 23 to 50 ppm.

The dominant iron species are FeCl20, FeCl+, and Fe2+, the con-
centrations of which are 2–10 orders of magnitude higher than those of
FeOH+, FeO0, and HFeO2

− (Fig. 14). The concentrations of FeCl20,
FeCl+, Fe2+, and FeOH+ increase with fluid pressure, while those of
FeO0, and HFeO2

− decrease with fluid pressure.
Tungsten species are dominated by HWO4

− and NaWO4
− and their

concentrations are 1–2 orders of magnitude higher than those of
NaHWO4

0, H2WO4
0, and WO4

2− (Fig. 14). The concentration of
HWO4

− is positively correlated to fluid pressure, while the concentra-
tion of NaWO4

− has a negative correlation to fluid pressure. The source
data can be accessed from the supplementary table in the web version.

4.7. Chemical responses to hydraulic fracturing driven by CO2-saturated
fluids

Table 4 shows the change of pH and tungsten solubility in the first,

third, fourth, and the fifth numerical experiments. The fluid pressure
fluctuated over ten times in each numerical experiment. pH in these
four numerical experiments had a range of 3.42–3.91 and increased by
0.32 on average. The increase in pH resulted in an accumulated de-
crease of 12.61–16.25 ppm in tungsten solubility, which accounted for
31.05% of the maximum tungsten solubility on average.

5. Discussion

5.1. Validity of numerical experiments of hydraulic fracturing

Magmatic-hydrothermal fluids are highly compressible and have a
significantly low viscosity compared to H2O-bearing silicate melts
(Audétat and Keppler, 2004). Previous studies have identified that fluid
compressibility has an influence on seismic activities (e.g. Geli et al.,
2014; Geli et al., 2016). Findings from the field of oil and gas industry
suggest that an increase in fluid compressibility and fluid viscosity
slows the change of the effective stresses and prolongs the time of

Fig. 10. The evolutions of the effective minimum principle stress (a), the effective mean normal stress (b), the fluid pressure (c), and the permeability (d) at the
reference node in the first (E1) and fourth (E4) numerical experiments. The only different variable between E1 and E4 was the initial fluid pressure. The tensile
strength of the reference node was satisfied later in E4 than that in E1.

Fig. 11. The effective minimum principle stress (a), the effective mean normal stress (b), the fluid pressure (c), and the permeability (d) at the reference node against
time in the first (E1) and fifth (E5) numerical experiments. The only different variable between E1 and E5 was the horizontal stress loaded in the first stage of the
numerical experiments. The tensile strength of the reference node was satisfied later in E5 than that in E1.
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fracturing (e.g. Chen et al., 2015; Ishida et al., 2004). This is consistent
with our numerical experiments (E1, E2, and E3).

The classic equations for analyzing the breakdown pressure suggest
that this parameter is positively correlated to the initial pore pressure
and the minimum horizontal stress (cf. Bunger et al., 2010; Kumari
et al., 2018). This is in accord with the results of the fourth and fifth
numerical experiments.

The sixth numerical experiment (E6) had a lower fixed fluid pres-
sure than the first one (E1). A low fixed fluid pressure caused a low
pressurization rate (Fig. 12c). The breakdown pressure in E6 was lower
than that in E1. Findings from laboratory and numerical experiments of
hydraulic fracturing suggest that the breakdown pressure increases
with the pressurization rate (e.g. Detournay and Cheng, 1992; Zhuang
et al., 2018; Zoback et al., 1977). This is consistent with the difference
of the breakdown pressure between E6 and E1.

Hydraulic fracturing in the numerical experiments was triggered at
a time scale of a few seconds. The driving fluid pressure used in the
numerical experiments is two times the lithostatic pressure at that
depth. The fluid overpressure formed in crust often falls between the
hydrostatic level and the lithostatic level at a given depth (Peacock
et al., 2017). Comparisons between the first and sixth numerical

experiments indicate that a decrease in the driving fluid pressure pro-
longs the time of fracturing. Therefore, the timescales of hydraulic
fracturing during formation of the tungsten deposits in southern China
may be longer than those in the numerical experiments. Certainly,
hydraulic fracturing is a transient mechanical process and its timescales
are shorter than those of hydrothermal flow and chemical reactions in
hydrothermal systems (Cox, 2005; Cox, 2016; Jébrak, 1997; Zhao et al.,
2012). A typical example of this transient process is fluid-driven
earthquakes (e.g. Miller et al., 2004).

5.2. Comparisons with other thermodynamic models and experimental
results

pH in the numerical experiments of hydraulic fracturing is
3.42–3.91, which is lower than that (pH=4–6) of the mineralizing
fluids forming tungsten deposits (Wood and Samson, 2000). This dif-
ference may be caused by the assumption that CO2 dissolved in NaCl
solutions is saturated in the thermodynamic model. Note that the pH
data in Wood and Samson (2000) come from the tungsten deposits in
the world except China and no pH of the tungsten deposits of southern
China is reported until now.

Fig. 12. The effective minimum principle stress (a), the effective mean normal stress (b), the fluid pressure (c), and the permeability (d) at the reference node against
time in the first (E1) and sixth (E6) numerical experiments. The only different variable between E1 and E6 was the fixed fluid pressure loaded in the second stage of
the numerical experiments. The tensile strength of the reference node was satisfied later in E6 than that in E1. The fluid pressure in E6 fluctuated from 164.2MPa to
92.0 MPa.

Fig. 13. The change of pH (a) and tungsten solubility (b) against fluid pressure under 350 °C and 10 w.t.% NaCl in the thermodynamic model Three lines represent
three different CO2 concentrations in NaCl aqueous solutions. pH decreases with fluid pressure and tungsten solubility increases with fluid pressure.
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Polya (1990) found from a thermodynamic model that tungsten
solubility decreases with decreasing fluid pressure. The tungsten-
bearing species in his model are HWO4− and WO4

2−. More tungsten-
bearing species were considered by Wood and Samson (2000). The
dominant tungsten species in their models is HWO4

−, which is con-
sistent with our models. Tungsten solubility in their models reaches a
few hundred ppm, which is higher than that in our models. This

difference comes from that scheelite and Ca-related reactions are absent
in our models. Their thermodynamic models suggest that tungsten so-
lubility is not a monotonic function of fluid pressure. In contrast,
tungsten solubility is positively correlated to fluid pressure in our
models. The comparisons above indicate that the results strongly de-
pend on the tungsten species and the existence of CO2 in hydrothermal
fluids.

Fig. 14. The change of iron species and tungsten species against fluid pressure in NaCl solutions with different CO2 concentrations. The dominant iron species and
tungsten species are FeCl20 and HWO4

−, respectively.

Table 4
The change of pH and tungsten solubility in the numerical experiments of hydraulic fracturing.

E1 E3 E4 E5 Average

Breakdown pressure (MPa) 167.95 167.99 171.23 175.15 –
pH range [3.45, 3.76] [3.45, 3.91] [3.43, 3.69] [3.42, 3.68] –
pH increase in log unit 0.31 0.46 0.26 0.26 0.32
Fluctuation times 11 14 15 15 –
Maximum tungsten solubility (ppm) 43.41 43.42 44.01 44.73 –
Accumulated tungsten decrease (ppm) 12.61 16.25 12.79 12.82 13.62
Accumulatedtungstendecrease
Maximumtungstensolubility

29.05% 37.42% 29.08% 28.66% 31.05%
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Liu et al. (2017b) conducted crystallization experiments of wol-
framite in a hydrothermal diamond-anvil cell using [Fe,Mn]WO4-
LiCO3-H2O as starting materials. They found that solubility of wol-
framite increased with CO2 component in solutions. Therefore, our
thermodynamic results are consistent with their findings although Mn-
related reactions are absent in our models.

5.3. Hydraulic fracturing and wolframite precipitation

The WO3 grade in the vein-type tungsten deposits of southern China
generally reach 0.15–1.5% (Mao et al., 2013), which are 104–105 times
the Clarke value of 0.6 part per million for the crust in eastern China
(Chi et al., 2012). However, it is poorly understood how the ores are
efficiently precipitated from hydrothermal fluids (e.g. Liu et al., 2015;
Polya, 1988). The similar question is also pending in other types of
hydrothermal deposits (e.g. Heinrich et al., 2005; Henley and Berger,
2000; Zhao et al., 2017a).

The mineralizing fluids of the tungsten deposits are interpreted to
have a magmatic source (e.g. Chen et al., 2018; Li et al., 2018). In this
case, simple cooling is inefficient to precipitate minerals because rocks
have a low thermal conductivity (Barton and Toulmin, 1961; Heinrich,
2005; Heinrich and Candela, 2014). Over ten fluctuations of fluid
pressure were identified in our numerical experiments. The first fluc-
tuation was caused by a significant increase in the permeability of the
reference node. Repeated recovery of fluid pressure resulted in frac-
turing of the surrounding nodes and the following fluctuations of fluid
pressure. The fluid pressure drops in our numerical experiments were
smaller than that caused by a seismic slip (Weatherley and Henley,
2013). However, repeated fluctuations of fluid pressure during a hy-
draulic fracturing process still decreased the solubility of CO2 and
caused CO2 escaping from hydrothermal fluids. CO2 escaping increased
pH and broke the chemical equilibrium where the dominant iron-
bearing and tungsten-bearing species decreased. The accumulated
tungsten precipitated after hydraulic fracturing reached
12.61–16.25 ppm, which accounted for approximately 30% of the
maximum tungsten solubility in solutions. Therefore, hydraulic frac-
turing is an efficient process for precipitating wolframite in the tungsten
deposits.

5.4. Limitations and further improvements

The numerical models in this study are established on many as-
sumptions and provide an explanation for the mechanisms of pre-
cipitating wolframite from CO2-saturated hydrothermal fluids. Further
modifications are suggested for improving the models and better ex-
plaining how wolframite precipitates from hydrothermal fluids.

First, wolframite in the tungsten deposits in southern China is a
solid solution between the two end-members, ferberite (FeWO4) and
hüebnerite (MnWO4) (e.g. Wang and Ji, 1989; Xie et al., 2017). Ther-
modynamic data related to MnWO4 and Mn2+ are required for further
improving the thermodynamic model of tungsten solubility in hydro-
thermal fluids.

Second, CO2-bearing fluid inclusions are not identified in all the
tungsten deposits (cf. Ni et al., 2015). However, it remains poorly un-
derstood how wolframite precipitates from CO2-free hydrothermal so-
lutions that are not mixed with meteoric fluids. This issue also met in
other types of hydrothermal deposits (e.g. Heinrich et al., 2005). An
attempt to solve this issue is to consider the concept of fluid mixing
proposed by Lester et al. (2012) and examine whether and how chaotic
advection of reactive hydrothermal fluids causes mineral deposition.

Third, fluid temperature was assumed to be independent on fluid
pressure change in our models. Whether a decrease in fluid pressure
causes a decrease in fluid temperature should be examined because

fluid temperature is a key variable controlling solubility of tungsten and
other metals in hydrothermal fluids (Yardley, 2005). This question is
related to adiabatic decompression (Heinrich et al., 2005), which is
quantified by the Joule-Thompson coefficient (Stauffer et al., 2014).
However, the Joule-Thompson coefficients of NaCl aqueous solutions
over 300 °C and 100MPa are unknown (Wood and Spera, 1984). De-
termination of this coefficient at higher temperatures and pressures
may help us find the mechanisms precipitating wolframite and other
ore minerals in magmatic-hydrothermal deposits.

6. Conclusions

Finite element based numerical experiments of hydraulic fracturing
coupled with a multi-component thermodynamic model were con-
ducted to examine whether the change of fluid pressure during a hy-
draulic fracturing process could cause wolframite precipitation. CO2-
bearing aqueous NaCl solutions with a salinity of 10 wt% at 350 °C were
used in the models. Hydraulic fracturing in the numerical experiments
is driven by fluids at a fixed fluid pressure. The changes of fluid pres-
sure in the numerical experiments are linked to the thermodynamic
model. The numerical experiments provide the following implications
for the mechanisms precipitating wolframite in the tungsten deposits of
southern China:

(1) Hydraulic fracturing is influenced by fluid compressibility, fluid
viscosity, the initial fluid pressure, the horizontal stress, and the
fixed fluid pressure. An increase in CO2 concentration increases the
fluid compressibility and prolongs the time of hydraulic fracturing.
An increase in fluid viscosity, the initial fluid pressure, and the
horizontal stress and a decrease in the fixed fluid pressure also
lengthen the time of fracturing.

(2) CO2 solubility in NaCl aqueous solutions is positively correlated to
fluid pressure. A decrease in fluid pressure increases pH and re-
duces the concentrations of the dominant iron species and the
dominant tungsten species. Therefore, tungsten solubility decreases
with decreasing fluid pressure. The pH derived from the thermo-
dynamic model is between 3.3 and 4.7 depending on fluid pressure
and CO2 concentrations. Tungsten solubility in fluids at 350 °C
reaches tens of ppm.

(3) Over ten fluctuations of fluid pressure were identified during a
hydraulic fracturing process. These fluid pressure fluctuations could
cause a decrease in tungsten solubility by 12.61–16.25 ppm, which
accounts for 31.05% of the maximum tungsten solubility. Thus,
hydraulic fracturing is an efficient process for precipitating wol-
framite from CO2-bearing hydrothermal fluids.
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A. Appendix

Basic equations

Elastic-plastic finite deformation theory is used in PANDAS (Xing and Makinouchi, 2002).The rate of deformation tensor is supposed to be the
sum of an elastic part De and a plastic part Dp:

= +D D Dij ij
e

ij
p

(A-1)

which are prescribed by the Hookes law and the associated flow rule, respectively. The elastic strain increment Dij
e is:

= −D C σ[ ]ij
e

ijkl
e

kl
o1 (A-2)

in which σkl
o is the Jaumann derivative of σkl.

The associated flow rule is as follows:

=
∂
∂

D λ
f
σ

̇
ij
p

ij (A-3)

in which λ ̇ is the plastic multiplier, σijis the Cauchy stress, and f is a plastic potential. Both the Maximum Tensile Stress Criterion and the Mohr-
Coulomb Criterion are applied here.

The effective stress σij
' is used when fluids are filled in the pores:

= −σ σ αPδij ij ij
'

(A-4)

in which P is the pore fluid pressure, α is the coefficient of the pore pressure, and δij is the Kronecker delta.
Following the mass conversation theory, the pressure diffusion equation is:
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a ε
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= +S
K

ϕ
K

1
s f (A-7)

in which k is the permeability scalar, Q is the Biot constant, = + +ε ε ε εv 11 22 33 is the volume strain, μ is the fluid viscosity, ϕ is the porosity, Kf is the
bulk modulus of the fluid and equals the reciprocal of fluid compressibility, and Ks is the bulk modulus of the solid matrix.

The permeability scalar follows the exponential law of effective stress (David et al., 1994):
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(A-9)

in which k0 is the initial permeability scalar, ϕ0 is the initial porosity, ω is the effective pressure sensitivity coefficient, −αPσ
3
kk is the effective mean

normal stress, and ξ is a damage factor. =ξ 1 when the rock is in elastic state. Low-porosity crystalline rocks have an effective pressure sensitivity
coefficient of 10−3–10−2 MPa−1 (David et al., 1994). = × − −ω 5 10 MPa3 1 was used in our models. Findings from laboratory and field experiments of
hydraulic fracturing suggest that the rock permeability is increased by at least 102–103 times after fracturing (e.g. Evans et al., 2012; Ladner and
Häring, 2009; Watanabe et al., 2017). In our models, =ξ 2000 is used when one of the two criterions above is met.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.oregeorev.2018.08.027.
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