Petrogenesis of Early Cretaceous low-Mg adakitic rocks along the southernmost margin of the North China Craton: implications for late Mesozoic crustal evolution

Longyao Chen, Wei Qu & Shuwen Liu

To cite this article: Longyao Chen, Wei Qu & Shuwen Liu (2017) Petrogenesis of Early Cretaceous low-Mg adakitic rocks along the southernmost margin of the North China Craton: implications for late Mesozoic crustal evolution, International Geology Review, 59:8, 996-1014, DOI: 10.1080/00206814.2016.1242094

To link to this article: http://dx.doi.org/10.1080/00206814.2016.1242094

Published online: 10 Oct 2016.

Article views: 34
Petrogenesis of Early Cretaceous low-Mg adakitic rocks along the southernmost margin of the North China Craton: implications for late Mesozoic crustal evolution

Longyao Chena,b, Wei Qua and Shuwen Liub

aInstitute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, PR China; bSchool of Earth and Space Sciences, Peking University, Beijing, PR China

ABSTRACT

This article reports systematic zircon U–Pb dating, whole-rock geochemistry, and Sr–Nd isotopic data for the Early Cretaceous Jialou granitoids along the southernmost margin of the North China Craton (NCC), adjacent to the Tongbai Orogen. These results will provide significant constrains on the crustal evolution of the southern margin of the NCC. Zircon U–Pb analyses, using laser ablation–multicollector–inductively coupled plasma–mass spectrometry, indicate that the Jialou granitoids were emplaced at ~130 Ma. The granitoids have high SiO\textsubscript{2}, K\textsubscript{2}O, Al\textsubscript{2}O\textsubscript{3}, Sr, and Ba contents, high Sr/Y and (La/Yb)\textsubscript{N} ratios, and low concentrations of MgO, Y, and heavy rare earth elements, indicating a low-Mg adakitic affinity. They have relatively high initial \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios (0.707464–0.708190) and negative \(\varepsilon\)Nd(t) values (−11.8 to −15.2), similar to those of the Palaeoproterozoic lower crust in the NCC. These geochemical and isotopic features indicate that the Jialou low-Mg adakitic rocks were derived by partial melting of mafic Palaeoproterozoic lower crust of the NCC at >50 km depth, leaving behind a garnet amphibolite residue. The petrogenesis of the Jialou low-Mg adakitic rocks, plus the petrogenesis of Mesozoic granitoids and lower crustal xenoliths entrained in the Late Jurassic Xinyang volcaniclastic diatreme, suggests that the continental crust along the southern margin of the NCC was thickened during the Middle Jurassic to Early Cretaceous, but thinned after 130 Ma. We propose that crustal thickening was caused by a late Middle Jurassic to Early Cretaceous intra-continental orogeny, rather than continent–continent collision between the NCC and the Yangtze Craton. We also suggest that crustal thinning and Early Cretaceous magmatism were related to subduction of the palaeo-Pacific plate, rather than post-orogenic collapse of the Qinling–Tongbai–Dabie Orogen.

1. Introduction

It is generally accepted that the North China Craton (NCC) has experienced significant lithospheric thinning and decratonization since the Mesozoic. The contrasting compositions of mantle xenoliths in Palaeozoic diamondiferous kimberlites and those in Cenozoic basalts suggest that >100 km of the ancient lithosphere was removed during the late Mesozoic and Cenozoic (Fan and Menzies 1992; Menzies et al. 1993, 2007; Zheng et al. 1998; Fan et al. 2000; Gao et al. 2002; Rudnick et al. 2004). Comprehensive geological studies of the NCC, involving the analysis of petrological, geochemical, geochronological, and geophysical data, have been used to elucidate the timing and mechanism of lithospheric thinning (Menzies et al. 1993, 2007; Zheng et al. 1998; Gao et al. 2002, 2004; Wu et al. 2005; and references therein). Two prevailing models have been proposed for the thinning process of the NCC lithosphere: (1) thermo-chemical erosion (Menzies et al. 1993, 2007; Y.G. Xu 2001; Y.G. Xu et al. 2004; Zheng et al. 1998), and (2) delamination (Gao et al. 2002, 2004; W.L. Xu et al. 2006, 2008; Wu et al. 2005). However, crustal evolution corresponding to lithospheric thinning specifically during the Mesozoic has been poorly studied.

The formation sequence of various types of magmatism is generally used to constrain the tectonic and crustal evolution of a region. Mesozoic granitoids are widespread along the southern margin of the NCC (Mao et al. 2010; Wang et al. 2011, 2013). Zircon U–Pb dating shows that the Mesozoic granitoid magmatism may be divided into three episodes: (1) Late Triassic (225–200 Ma), (2) Late Jurassic to Early Cretaceous (160–130 Ma), and (3) Early Cretaceous (130–110 Ma). The
granitoids provide a valuable opportunity to understand the crustal evolution of the southern margin of the NCC during the Mesozoic. In addition, a number of granitoid-hosted gold and molybdenum deposits occurred along the western side of the southern margin of the NCC, adjacent to the Qinling Orogen (Chen et al. 1998, 2007; Mao et al. 2002, 2005, 2011; Chen 2006; Deng et al. 2016; Hu et al. 2016). Therefore, the majority of previous investigations on the Mesozoic granitoids in the southern margin of the NCC were focused on the western segment (the Xiaoqinling and Xiong’ershan areas) (Guo et al. 2009; Gao et al. 2010, 2014a, 2014b; Ding et al. 2011; Qi et al. 2012; Wang et al. 2011, 2013; Hu et al. 2012; Zhao et al. 2012a), and only a few studies are focused on the eastern segment Mesozoic granitoids in the Jialou area, where is adjacent to the Tongbai Orogen (Zhao et al. 2008). However, the origin and geodynamic background of the Mesozoic granitoids still remain unclear in the eastern segment, which have affected the better understanding of crustal evolution of the southern margin of the NCC.

In this article, we report geochronological, geochemical, and Sr–Nd isotopic data for the Jialou pluton at the southernmost margin of the NCC, in order to investigate its petrogenesis and magma source of the granitoids. The crustal evolution of the southern margin of the NCC will be discussed, taking into consideration the results of previous research conducted on the Mesozoic granitoids in the area.

2. Geological setting

The NCC is bordered by the late Palaeozoic Central Asian orogenic belt to the north, the early Palaeozoic Kunlun–Qilian Orogen to the west, the Mesozoic Qinling–Tongbai–Dabie Orogen to the south, and the Su–Lu ultrahigh-pressure metamorphic belt to the east (Figure 1(a)). The southern margin of the NCC is bounded by the Lingbao–Wuyang Fault to the north, and is separated from the Qinling–Tongbai–Dabie Orogen by the Luonan–Luanchuan Fault in the south (Figure 1(b)). The southern margin of the NCC was involved into the Mesozoic–Cenozoic intra-continental orogenic deformation (Zhang et al. 2001; Xu et al. 2009). The region has the consistent basement-cover sequence with the inner NCC. The basement is dominated by 2.8–2.5 Ga tonalitic–trondhjemitic–granodioritic (TTG) gneisses and Archean to Palaeoproterozoic supracrustal rocks of the Taihua Group, comprising mainly amphibolite, felsic gneiss, migmatite, quartzite, and marbles (Kröner et al. 1988; Wan et al. 2006; Xu et al. 2009). The extensively exposed Palaeoproterozoic volcanic rocks of the Xiong’er Group (1.75–1.78 Ga) unconformably overlie Archean to Palaeoproterozoic basement rocks and consist predominantly of intermediate–acidic lavas and pyroclastic rocks interlayered with minor sedimentary rocks (Zhao et al. 2004, 2009). The Xiong’er volcanic rocks are unconformably overlain by Mesozoic–Neoproterozoic terrigenous sandstones, limestones, and

Figure 1. (a) Simplified geological map of China showing the major tectonic blocks surrounding the North China Craton (NCC) and the location of the southern margin of the NCC (red lines). (b) Geological map of the southern margin of the NCC showing distribution of the Late Mesozoic granitoids (modified from Dong et al. 2015). The fold fonts such as 134 ± 1 represent the ages (Ma) of the granitoids with adakitic affinity. Major rock sampling locations are listed in Table 1. Age data sources: Xiaoqinling area (Zhu et al. 2008; Guo et al. 2009; Mao et al. 2010; Hu et al. 2012; Zhao et al. 2012a), Xiong’ershan area (Guo et al. 2009; Mao et al. 2010; Gao et al. 2014a, 2014b). (c) Geological map of the Jialou granitoids. The sampling localities of the studied rocks are indicated.
calcisilicate rocks of Guandaokou Group and the Luanchuan Group (Lu et al. 2008; Hu et al. 2014). These rocks are locally overlain by a Sinian to Ordovician passive continental margin sequence composing chiefly of platform carbonates, shales, and sandstones (Xue et al. 1996; Zhang et al. 2001). The Xiaoqinling, Xiong’ershan, and Jialou areas are uplifted basement terranes, scattering along the southern margin of the NCC from west to east (Figure 1(b)). These basement terranes were uplifted during the Jurassic to Cretaceous because of intracratonic extension and emplacement of granitic magma (Liu et al. 1998; Zhang and Zheng 1999).

Multiple stages of magmatic activity are recognized along the southern margin of the NCC, as inferred from the presence of Neoarchean tonalite–trondhjemite–granodiorite (TTG) rocks, Palaeo-Mesoproterozoic granites, and voluminous Mesozoic granitoids. The Mesozoic magmatism may be divided into three episodes: Late Triassic, Late Jurassic to Early Cretaceous, and Early Cretaceous (Table 1). The Late Triassic granitoids only occur in the Xiaoqinling area and consist chiefly of biotite monzogranites, quartz diorites, quartz monzonites, and hornblende monzonites (Ding et al. 2011; Qi et al. 2012). Most previous studies suggested that these granitoids formed in a post-collisional extensional

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Coordinates</th>
<th>Lithology</th>
<th>Age(Ma)</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaoqinling area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0601</td>
<td>Laoniushan</td>
<td>N 34°20′15.8″ E 109°57′48.3″</td>
<td>Monzogranite</td>
<td>146 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Zhu et al. (2008)</td>
</tr>
<tr>
<td>JD01</td>
<td>Jinduicheng</td>
<td>N 34°19′48.5″ E 109°57′16.3″</td>
<td>Granite porphyry</td>
<td>141 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Zhu et al. (2008)</td>
</tr>
<tr>
<td>LF04*</td>
<td>Huashan</td>
<td>N 34°28′01.7″ E 109°57′51.7″</td>
<td>Monzogranite</td>
<td>134 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Guo et al. (2009)</td>
</tr>
<tr>
<td>ZB2</td>
<td>Huanglongpu</td>
<td>N 34°21′18″ E 110°01′52.8″</td>
<td>Monzogranite</td>
<td>131 ± 1</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>NN1</td>
<td>Niangniangshan</td>
<td>N 34°26′29″ E 110°47′46″</td>
<td>Monzogranite</td>
<td>142 ± 3</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>HS10*</td>
<td>Fangshanyu</td>
<td>N 34°28′26.1″ E 109°57′51.8″</td>
<td>Monzogranite</td>
<td>132 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Hu et al. (2012)</td>
</tr>
<tr>
<td>W-4*</td>
<td>Wenyu</td>
<td></td>
<td>Monzogranite</td>
<td>131 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Zhao et al. (2012a)</td>
</tr>
<tr>
<td>N-3*</td>
<td>Niangniangshan</td>
<td></td>
<td>Monzogranite</td>
<td>134 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Zhao et al. (2012a)</td>
</tr>
<tr>
<td>Xiong’ershan area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP2</td>
<td>Haoping</td>
<td>N 34°16′46″ E 109°41′34″</td>
<td>Granite</td>
<td>131 ± 1</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>HS2</td>
<td>Huashan</td>
<td>N 34°19′17″ E 109°49′42″</td>
<td>Monzogranite</td>
<td>132 ± 2</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>HY02*</td>
<td>Heyu</td>
<td>N 34°59′32.4″ E 111°51′45″</td>
<td>Monzogranite</td>
<td>135 ± 2</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Guo et al. (2009)</td>
</tr>
<tr>
<td>LM2</td>
<td>Leimengou</td>
<td>N 34°11′42″ E 111°51′37″</td>
<td>Granite porphyry</td>
<td>136 ± 2</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>WZS1</td>
<td>Wuzhuangshan</td>
<td>N 34°09′05″ E 111°59′38″</td>
<td>Monzogranite</td>
<td>157 ± 1</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>MG</td>
<td>Mogou</td>
<td>N 34°06′13″ E 112°04′03″</td>
<td>Granite porphyry</td>
<td>134 ± 2</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>HPG10</td>
<td>Haopinggou</td>
<td>N 34°10′48″ E 112°04′03″</td>
<td>Granite porphyry</td>
<td>130 ± 2</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>DG-B5</td>
<td>Donggou</td>
<td>N 33°57′00″ E 112°22′48″</td>
<td>Granite porphyry</td>
<td>112 ± 1</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>TSM5</td>
<td>Taishanmiao</td>
<td>N 33°49′07″ E 112°15′10″</td>
<td>Syenogranite</td>
<td>115 ± 2</td>
<td>Zircon U-Pb SHRIMP</td>
<td>Mao et al. (2010)</td>
</tr>
<tr>
<td>FN-63</td>
<td>Funiushan</td>
<td>N 33°46′25″ E 112°09′25″</td>
<td>Monzogranite</td>
<td>115 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Gao et al. (2014a)</td>
</tr>
<tr>
<td>TSM-31</td>
<td>Taishanmiao</td>
<td>N 33°51′24″ E 112°09′46″</td>
<td>Syenogranite</td>
<td>125 ± 2</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>Gao et al. (2014b)</td>
</tr>
<tr>
<td>Jialou area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZG03-1</td>
<td>Leshan</td>
<td>N 32°51′23″ E 113°53′11″</td>
<td>Monzogranite</td>
<td>130 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>This study</td>
</tr>
<tr>
<td>ZG05-1</td>
<td>Zhugou</td>
<td>N 32°51′16″ E 113°43′12″</td>
<td>Monzogranite</td>
<td>128 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>This study</td>
</tr>
<tr>
<td>ZG11-1</td>
<td>Mazhuang</td>
<td>N 32°52′23″ E 113°36′58″</td>
<td>Monzogranite</td>
<td>132 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>This study</td>
</tr>
<tr>
<td>ZG13-1</td>
<td>Fengzhuang</td>
<td>N 32°53′13″ E 113°26′54″</td>
<td>Monzogranite</td>
<td>133 ± 1</td>
<td>Zircon U-Pb LA-ICPMS</td>
<td>This study</td>
</tr>
</tbody>
</table>
setting (Ding et al. 2011; Qi et al. 2012; Wang et al. 2013). The late Mesozoic granitoids are mainly exposed, from west to east, in the Xioaqinling, Xiong’ershan, and Jialou areas (Table 1). These intrusions comprise a wide range of lithologies, including syenogranite, monzogranite, granodiorite, and quartz diorite, which occur both as small porphyritic bodies and large batholiths (Wang et al. 2011; 2013). Previous zircon geochronological studies for the granitoids in the Xioaqinling and Xiong’ershan areas, adjacent to the Qinling Orogen, show that those plutons formed at 158–100 Ma (Figure 1(b); Mao et al. 2010; Wang et al. 2011). However, the ages of the granitoids in the Jialou area adjacent to the Tongbai Orogen have not been well constrained.

3. Sample descriptions

The Jialow granitoids adjacent to the Tongbai Orogen are located ~20 km northwest of the Biyang County, with an exposure outcrop of ~450 km². They occur as batholith intruded into the Xiong’er Group and Luanchuan Group and contain abundant xenoliths of banded and massive amphibolites. The granitoids are composed predominantly of medium- to fine-grained porphyritic biotite monzogranites. Mineral contents of the studied rocks for classification were recalculated by microscope-observation. Used it as a base, all the studied rocks have been plotted in the QAP diagram. These granitoids are composed chiefly alkali feldspar (35%–40%), plagioclase (25%–35%), quartz (15%–25%), biotite (5%–10%) and hornblende (1%–5%), with accessory mineral association of magnetite, zircon, apatite and titanite (Figure 2). Most of the alkali feldspar occurs as phenocrysts of up to 1–5 cm in size, and contain mineral inclusions of plagioclase, quartz, and biotite. Plagioclase is typically subhedral and contains polysynthetic twins; some plagioclase crystals have been subjected to sericitization and epidotization. Quartz is anhedral with a mosaic texture, and shows strong undulose extinction. Biotite is anhedral and displays a strong shape-preferred orientation; some biotite grains have been altered to chlorite. Most of the monzogranites display a weak gneissosity, defined by the alignment of alkali feldspar phenocrysts, fragmented quartz, and biotite, as a result of deformation.

To understand the nature and origin of the Jialou granitoids, nine samples were selected for detailed geochemical analyses. In addition, four representative samples were chosen for zircon U–Pb dating to constrain the age of magmatism. The sampling locations are shown in Figure 1(c), and are also detailed in Table 1 along with the mineralogy and measured age of each sample.

4. Analytical methods

Zircon crystals were extracted by conventional techniques, including crushing, sieving, heavy liquid separation, and hand picking under a binocular microscope. Representative zircon grains were mounted in epoxy discs and polished to expose two-thirds of the crystal widths. The internal morphology of the zircons was imaged using cathodoluminescence (CL). The zircon analyses were performed using laser ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) at the Tianjin Institute of Geology and Mineral Resources, Tianjin, China. For details of the instrumental conditions and analytical procedures, see Li et al. (2009) and Jackson et al. (2004), respectively. Spot diameters were set to 35 μm, laser frequency was 8–10 Hz, and plasma density was 13–14 J/cm². Zircon standard CJ-1 was used as an external standard for U–Pb dating, and NIST612 was analysed twice for every six analyses when determining the concentrations of Pb, U, and Th. Off-line selection and the integration of background and sample signals, time-drift corrections, and quantitative calibrations were performed using ICPMSDataCal software (Liu et al. 2008, 2010b). Ages and concordia diagrams were produced using the ISOPLOT 3.23 software (Ludwig 2003). Common Pb was corrected using ²⁰⁸Pb. Age uncertainties for individual analyses are shown as one standard deviation (1σ), and calculated weighted mean ages are quoted at the 95% confidence level.

All samples for whole-rock analyses were crushed and then pulverized in an agate mill. Whole-rock major and trace element analyses were carried out at the National Research Center for Geoanalysis at the Chinese Academy of Geological Sciences, Beijing, China. Major oxides were determined using X-ray fluorescence (XRF; Rigaku-3080) after fusion of the sample powder with lithium tetraborate. Relative standard deviations are better than 5%. Trace element abundances were measured using inductively coupled plasma–mass spectrometry (ICP–MS; TJA PQ ExCell), following the method of Wang et al. (2003). Sample powders were digested with a mixture of HF and HNO₃ in high-pressure Teflon bombs on a hot plate for 24 h. After complete digestion, the sample solutions were evaporated to incipient dryness, refluxed with 6N HNO₃, and heated again to incipient dryness to remove
The samples were then dissolved in 2 ml of 3N HNO₃ and diluted with Milli-Q water (18 MX) to a final dilution factor of 2000. The detection limit for trace elements was ~0.1 ppm. Analytical uncertainties were <5% for trace elements with concentrations of ≥20 ppm, and 5%–10% for concentrations of ≤20 ppm. The chondritic values used in the normalization of rare earth element (REE) patterns and the primitive mantle (PM) values used in spider diagrams are from Sun and McDonough (1989).

Sr–Nd isotope analyses were conducted at the Key Laboratory of Isotopic Geology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing. The Sr isotope compositions and concentrations of Rb, Sr, Sm, and Nd were measured by isotope dilution in a Finnigan MAT-262 mass spectrometer. Nd isotope compositions were acquired by a Nu Plasma HR MC-ICP-MS (Nu Instruments). The experimental procedure is described in detail by He et al. (2007). The Nd and Sr measurements were corrected for mass fractionation by normalization to 146Nd/144Nd = 0.7219 and 88Sr/86Sr = 8.37521, respectively. External precisions during this period of measurement for Sr and Nd isotopic compositions were ±0.000010 (n = 18) and ±0.000011 (n = 18), respectively. The 147Sr/146Sr ratio for the NBS987 standard is 0.710238 ± 12 (2σ) and the 143Nd/144Nd ratio for the JMC Nd standard is 0.511127 ± 10 (2σ).

Figure 2. Photomicrographs showing the mineralogy and texture of the Jialow granitoids. (a–b) Plagioclase with sericitization forms as subhedral crystals. (c–d) Hypidiomorphic granular texture of the biotite monzogranite. (e–f) Alkali feldspar occurs as phenocryst and contains mineral inclusions of plagioclase, quartz, and biotite. Mineral abbreviations: Bt, biotite; Hbl, hornblende; Afs, alkali feldspar; Pl, plagioclase; Qtz, quartz; Ttn, titanite.
5. Results

5.1. Zircon U–Pb ages

The zircon U–Pb isotopic data and representative CL images of zircons are presented in Supplementary Table 1 and Figure 3, respectively. The U–Pb concordia diagrams for the zircon analyses are shown in Figure 4. The zircons from the four samples are typically euhedral to subhedral, with short to long prismatic habits and lengths of 120–200 μm. Most of the zircons show oscillatory zoning in the CL images, as typically observed in magmatic zircons. Their Th/U ratios range from 0.04 to

![Figure 3](image1.png)

Figure 3. Representative cathodoluminescence (CL) images of zircon grains from the Jialou low-Mg adakitic rocks. The number of the sample from which the zircon was extracted is given at top left in each panel, and the analytical spots within each zircon grain are circled. Age errors are given at 1σ. Scale bars are 100 μm.

![Figure 4](image2.png)

Figure 4. Zircon U–Pb concordia diagrams for selected samples of the Jialou low-Mg adakitics rocks collected along the southern margin of the NCC: (a) sample ZG03-1; (b) sample ZG05-1; (c) sample ZG11-1; (d) sample ZG13-1. See text for explanation.
3.21 (mostly >0.4), also suggesting a magmatic origin (Belousova et al. 2002). Some captured zircons were observed in sample ZG13-3, and these have no clear oscillatory zoning.

Twenty-four analytical spots on 24 zircon grains from sample ZG03-1 yield $^{206}\text{Pb}/^{238}\text{U}$ apparent ages of between 124 ± 1 and 133 ± 1 Ma. Except for 8 outliers, the other 16 analyses yield a weighted mean age of 130 ± 1 Ma (MSWD = 2.0). Twenty-two analytical spots on 22 zircon grains from sample ZG05-1 have $^{206}\text{Pb}/^{238}\text{U}$ apparent ages ranging from 123 ± 2 to 133 ± 2 Ma. Except for 7 outliers, the other 15 analyses yield a weighted mean age of 128 ± 1 Ma (MSWD = 1.02). Twenty-three spots on 23 zircon grains from sample ZG11-1 have $^{206}\text{Pb}/^{238}\text{U}$ apparent ages ranging from 130 ± 1 to 138 ± 2 Ma. Except for 9 outliers, the other 15 analyses yield a weighted mean age of 132 ± 1 Ma (MSWD = 1.4). Twenty-four analytical spots on 23 zircon grains from sample ZG13-1 yield $^{207}\text{Pb}/^{206}\text{Pb}$ ages of 1751 ± 32 Ma, 2017 ± 22 Ma, 2368 ± 21 Ma, 2153 ± 24 Ma, and 1683 ± 24 Ma, representing the ages of captured zircons. Thus, our above zircon U–Pb isotopic dating results reveal that the Jialou granitoids were emplaced at ~130 Ma.

5.2. Major and trace elements

The major and trace element data for the Jialou granitoids are listed in Supplementary Table 2. In the quartz–alkali feldspar–plagioclase (QAP) diagram, all the samples are plotted in the field of granite (Figure 5(a)). All the samples have similar geochemical compositions to each other. They have high contents of SiO$_2$ (66.39–73.83 wt.%), K$_2$O (2.21–4.97 wt.%), Al$_2$O$_3$ (13.91–15.50 wt.%), Sr (452–688 ppm), and Ba (918–2168 ppm), high ratios of Sr/Y (34–78) and (La/Yb)$_N$ (21–43, except for sample ZG03-1), and low concentrations of MgO (0.26–1.5 wt.%) and low Mg$^+$ (<45, with three exceptions). They are all subalkaline according to the total alkaline vs. silica (TAS) classification of Middlemost (1994) (Figure 5(b)). In the K$_2$O vs. SiO$_2$ classification diagram the samples plot in the high-K calc-alkaline field (Figure 5(c)). The Jialou monzogranites are metaluminous to weakly peraluminous with A/NK ratios [molar Al$_2$O$_3$/(CaO+Na$_2$O+K$_2$O)] of 0.93–1.04. In the chondrite–normalized REE patterns, these samples have been found to be significantly enriched in light rare earth elements (LREE) and strongly depleted in heavy rare earth elements (HREE), with (La/Yb)$_N$=1–43 (Figure 6(a)). They have a total REE contents of 95–292 ppm and minor or no negative Eu anomalies (Eu/Eu* = 0.72–0.99). In N-MORB-normalized spider diagrams (Figure 6(b)), they are characterized by enrichment of large ion lithophile elements (LILE; e.g. Rb, Sr, Ba, Th, and U) and depletion of high field strength elements (HFSE; e.g. Nb, Ta, and Ti) and P.

5.3. Whole-rock Sr–Nd isotopes

Whole-rock Rb–Sr and Sm–Nd isotope data for rocks from the Jialou granitoids are presented in Supplementary Table 3 and plotted in Figure 7. The initial $^{87}\text{Sr}/^{86}\text{Sr}$ and $^{144}\text{Nd}/^{143}\text{Nd}$ ratios were calculated at 130 Ma on the basis of zircon U–Pb dating of the monzogranites. Four monzogranite samples display similar isotopic compositions with initial $^{87}\text{Sr}/^{86}\text{Sr}$ (I$_{Sr}$) ratios of 0.707464–0.70819 and $e_{\text{Nd}}(t)$ values of −11.8 to −15.2. These samples have Nd two-stage model ages (T_{DM2}) of 1.9–2.2 Ga.
6. Discussion

6.1. Petrogenesis of the adakitic granites

The Jialou granitoids have high SiO₂, Al₂O₃, K₂O, and Sr contents (>400 ppm), and high ratios of Sr/Y (34–78) and (La/Yb)ₚₑₚₑ (21–30, except for sample ZG03-1), as well as low Y (7.99–20.2 ppm) and Yb (0.78–1.67 ppm) contents (Supplementary Table 2). Most samples fall within the adakite field in the Sr/Y vs. Y diagram (Figure 8). Moreover, their REE patterns show strong LREE enrichment and negligible Eu anomalies (Figure 6(a)). All these geochemical characteristics indicate that the granitoids are most likely low-Mg adakitic rocks, similar to the late Mesozoic low-Mg adakitic rocks in the Dabie Orogen (Wang et al. 2007a; H.J. Xu et al. 2007; 2012; He et al. 2011). Several mechanisms have been proposed for the origin of adakites and adakitic rocks: (1) partial melting of subducted basaltic oceanic crust (Drummond and Defant 1990; Martin 1999; Yogodzinski et al. 2001); (2) partial melting of thickened lower continental crust (Atherton and Petford 1993; Petford and Atherton 1996; Smithies and Champion 2000; Wang et al. 2006); (3) partial melting of delaminated lower continental crust (Xu et al. 2002; Gao et al. 2004; Wang et al. 2006; W.L. Xu et al. 2006; Hou et al. 2007); and (4) assimilation and fractional crystallization (AFC) processes from parental basaltic magmas (Feeley and Hacker 1995; Wareham et al. 1997; Castillo et al. 1999; Macpherson et al. 2006).

The final collision of the NCC and the Yangtze Craton (YC) occurred in the late Permian–Triassic, followed by crustal extension and lithospheric thinning in the Early Cretaceous (Ames et al. 1993, 1996; Li et al. 1993; Liu et al. 2011, 2013; Wu and Zheng 2013). The Jialou adakitic rocks along the southern margin of the NCC were formed in an interior continental setting during the Cretaceous. Compared with typical adakites formed by partial melting of subducted oceanic crust, they have

Figure 6. (a) Chondrite–normalized REE pattern and (b) N-MORB–normalized trace element spider diagrams for the Jialou granitoids. Chondrite and N-MORB values used for normalization are from Sun and McDonough (1989).
amphibole could theoretically cause an increase in the Sr/Y and La/Yb ratios (Zhao and Zhou 2007). Therefore, one could infer that the high Sr/Y ratios are the result of such a process. However, the adakitic rocks produced by fractionation of amphibole should have U-shaped chondrite-normalized REE patterns and variable Dy/Yb ratios (MacPherson et al. 2006). The right-inclined REE pattern and constant Dy/Yb ratios of the adakitic rocks studied here are therefore inconsistent with an origin by fractional crystallization of amphibole (Figure 6a). Their Sr/Y and La/Yb ratios have no obvious correlations with SiO$_2$, also suggesting that high Sr/Y and La/Yb ratios were inherited from the source region, rather than produced by magma differentiation. In addition, co-existing Cretaceous basalt or gabbro has not been found in the Jialou area, further excluding the possibility that the adakitic rocks in the region are a product of fractional crystallization.

In general, magmas that form by partial melting of delaminated lower continental crust subsequently interact with mantle peridotite during ascent (Gao et al. 2004). Therefore, adakitic rocks derived from delaminated lower continental crust typically have higher MgO, Cr, and Ni contents, and Mg$^+$ values than those formed directly from thickened lower continental crust (e.g. W.L. Xu et al. 2006, 2008; Huang et al. 2008; Zhang et al. 2010; Yu et al. 2015). However, the Jialou adakitic rocks show low MgO, Cr, and Ni contents and Mg$^+$ values. In the SiO$_2$ vs. MgO diagram (Figure 9), all samples plot in the field of adakitic rocks derived from partial melting of mafic lower crust and experimental melts of metabasalts and eclogites at 1–4.0 GPa. The geochemical characteristics above are similar to those of the Early Cretaceous low-Mg adakitic rocks in the Dabie Orogen and along the southern margin of the NCC, both of which are thought to be derived from melting of the thickened lower crust (Chen et al. 2002; Wang et al. 2007a; H.J. Xu et al. 2007, 2012; He et al. 2011, 2013; Hu et al. 2012; Li et al. 2012, 2013; Zhao et al. 2012a; Yang et al. 2010, 2016). Hence, the partial melting of thickened lower crust is a plausible explanation for the generation of the low-Mg adakitic rocks in the Jialou area adjacent to the Tongbai Orogen.

6.2. Nature of the magmatic source

The low-Mg adakitic rocks in the Jialou area have relatively high initial $\frac{^{87}Sr}{^{86}Sr}$ ratios (0.7075–0.7082) and negative $\varepsilon_{Nd}(t)$ values (−11.8 to −15.2), similar to other Early Cretaceous low-Mg adakitic rocks in the southern margin of the NCC ($\left(\frac{^{87}Sr}{^{86}Sr}\right)_{i} = 0.7074–0.7089$, $\varepsilon_{Nd}(t) = −10.1$ to $−18.5$; Hu et al. 2012; Zhao et al. 2012a; Li et al. 2013) (Figure 7). This similarity suggests that all Early

Figure 7. Nd–Sr isotopic compositions of the Jialou adakitic rocks. Other low-Mg adakitic rocks along the southern margin of the NCC are from Guo et al. (2009), Zhao et al. (2012a), Hu et al. (2012), and Li et al. (2013). The data for NCC high-Sr/Y rocks (which are Early Cretaceous in age) are from W.L. Xu et al. (2006, 2008); Hou et al. (2007); Wu et al. (2005); and Jiang et al. (2007), representing the lower crust of the NCC. The data for NCC granulites are from Zhou et al. (2002) and Liu et al. (2004). The data for Dabie low-Mg adakitic rocks (which are Early Cretaceous in age) are from Chen et al. (2002), Zhang et al. (2002), Wang et al. (2007a), H.J. Xu et al. (2012), and He et al. (2013). The data for the Taihua Group are from Huang and Wu (1990), Ni et al. (2009), and X.S. Xu et al. (2009).

Figure 8. Sr/Y vs. Y diagram for the Jialou adakitic rocks. Fields of adakite and arc magmatic rocks are from Drummond and Defant (1990).
Cretaceous low-Mg adakitic rocks along the southern margin of the NCC were derived from the same source. Their whole-rock two-stage Nd model ages range from 1.9 to 2.2 Ga, suggesting that a Palaeoprotrozoic lower crust was the major source of the adakitic rocks. However, it is still unclear whether the lower crust was derived from the NCC or the subducted YC, because the YC was subducted beneath the southern margin of the NCC during or before the Late Jurassic (Ames et al. 1993; Santosh et al. 2000, 2005a, 2012; Santosh et al. 2007; Santosh 2010). The geochemical characteristics and Hf isotope compositions of zircons from 1.8–2.1 Ga intermediate and mafic granulites from the lowermost part of the lower crust suggest that they were the products of mantle-derived magma that was underplated and contaminated by older crustal components (Zheng et al. 2003, 2008). The Palaeoprotrozoic (1.8–2.2 Ga) tectono-thermal event is also recorded in granulate xenoliths from the Hannuoba basalts at the northern edge of the Trans-North China Orogen and the Fuxian kimberlites in the eastern part of the Eastern Block (Zheng et al. 2004a, 2004b; Zhang et al. 2012; Tang et al. 2014). The widespread evidence for a magmatic/thermal event at this time demonstrates the presence of a 1.8–2.2 Ga

Orogen, which were derived from partial melting of the lower crust of the YC (Chen et al. 2002; Zhao et al. 2005b; 2007; Wang et al. 2007a; H.J. Xu et al. 2007; 2012; He et al. 2011; 2013) (Figure 7). Thus, it can be concluded that the Early Cretaceous adakitic rocks in the Jialou area were most likely directly derived from partial melting of the ancient lower crust of the NCC.

The widespread Taihua Group basement rocks are the oldest rocks along the southern margin of the NCC. They have been metamorphosed to the amphibolite facies, and locally to the granulite facies, consistent with middle- to lower-crustal levels (Rudnick and Fountain 1995, Rudnick and Gao 2003). Available geological data show that the Taihua Group was formed mostly during the Neoproterozoic and Palaeoproterozoic (2.84–2.26 Ga), and was strongly deformed and metamorphosed between 2.1 and 1.8 Ga (Kröner et al. 1988; Xue et al. 1995; Wan et al. 2006; Xu et al. 2009). However, the initial $^{87}Sr/^{86}Sr$ and $\varepsilon_{Nd}(t)$ values of the Neoproterozoic and Palaeoproterozoic Taihua Group metamorphic basement rocks at the age of intrusion (~130 Ma) are distinct from those of the adakitic rocks in the Jialou area (Figure 7). Furthermore, the whole-rock two-stage Nd model ages (1.9–2.2 Ga) of adakitic rocks are much younger than the ages of the Taihua Group. Hence, the Taihua Group may not be the magma source of the Jialou adakitic rocks. Granulate xenoliths brought to the surface by basaltic volcanics and kimberlites provide an ideal opportunity to study samples of the lower continental crust (Rudnick and Fountain 1995; Rudnick and Gao 2003). Granulate xenoliths entrained within the Mesoproterozoic Xinyang volcaniclastic diatremes in the southern NCC reveal that the lower crust there was strongly influenced by a tectono-thermal event during the Palaeoproterozoic (1.8–2.2 Ga) (Zheng et al. 2003, 2004a, 2006, 2008; Ping et al. 2015), corresponding to the timing of the collision between the eastern and western blocks of the NCC (Zhao et al. 2000, 2005a, 2012b; Santosh et al. 2007; Santosh 2010). The geochemical characteristics and Hf isotope compositions of zircons from 1.8–2.1 Ga intermediate and mafic granulites from the lowermost part of the lower crust suggest that they were the products of mantle-derived magma that was underplated and contaminated by older crustal components (Zheng et al. 2003, 2008). The Palaeoproterozoic (1.8–2.2 Ga) tectono-thermal event is also recorded in granulate xenoliths from the Hannuoba basalts at the northern edge of the Trans-North China Orogen and the Fuxian kimberlites in the eastern part of the Eastern Block (Zheng et al. 2004a, 2004b; Zhang et al. 2012; Tang et al. 2014). The widespread evidence for a magmatic/thermal event at this time demonstrates the presence of a 1.8–2.2 Ga

![Figure 9](image-url)
lower crust, which may be the most likely source of the Jialou adakitic rocks. Moreover, the 1.8–2.2 Ga intermediate and mafic granulites have Sr–Nd isotopic compositions that are indistinguishable from those of the Jialou adakitic rocks (Figure 7), indicating that the adakitic rocks in the Jialou area were derived from partial melting of the 1.8–2.2 Ga lower crust of the NCC.

The geochemical compositions of melts are thought to be buffered by equilibrated residues (Rapp et al. 1991; Sen and Dunn 1994; Springer and Seck 1997; Litvinovsky et al. 2000). Garnet is strongly compatible for HREEs (e.g. Yb and Lu) (Nash and Creecraft 1985; Otamendi et al. 2002), and amphibole is compatible for MREEs and HREEs (e.g. Dy and Ho) and Y. When garnet is the main residual mineral, HREE plots will show steep patterns with Y/Yb ≈ 10 and (Ho/Yb)N ≈ 1 (Ge et al. 2002; Hu et al. 2012). In contrast, when amphibole is the main residual mineral phases, HREE plots will show flat patterns with Y/Yb > 10 and (Ho/Yb)N > 1.2 (Ge et al. 2002; Hu et al. 2012). Ca-rich plagioclase has a high partition coefficient for Sr and Eu (Nash and Creecraft 1985), and thus crystallization of Ca-rich plagioclase in melt residues can result in depletions of Sr and Eu in the equilibrium melt. The Jialou low-Mg adakitic rocks have much high Sr, Sr/Y, and (La/Yb)N ratios, and lower Y (Supplementary Table 2), and they show flat HREE patterns with Y/Yb and (Ho/Yb)N, and negligible negative Eu anomalies (Figure 6, Supplementary Table 3). This indicates that garnet and amphibole, but little or no plagioclase, were residual phases in the source of the Jialou adakitic rocks. In addition, geochemical modelling of Sr/Y vs. Y (Figure 8) shows that the Jialou adakitic rocks could have been derived by partial melting of a basaltic source, resulting in an eclogite to garnet amphibolite residual phase (Drummond and Defant 1990).

6.3. Implications for crustal evolution

As already discussed above, the Early Cretaceous Jialou adakitic rocks were most likely derived from partial melting of a thickened mafic lower crust containing the residual phases of eclogites and amphibolites. Partial melting experiments on mafic rocks indicate that garnet becomes stable at depths of at least 40 km (12 kbar), and more typically, greater than 50 km (15 kbar), while plagioclase becomes unstable at depths greater than ~50 km (15 kbar) (Sen and Dunn 1994; Rapp 1995; Rapp and Watson 1995; Litvinovsky et al. 2000; Patiño Douce 2005). Therefore, the Early Cretaceous Jialou adakitic rocks with pronounced garnet and amphibole signatures, but without plagioclase fingerprints in their sources, were formed by partial melting of mafic lower crust at pressures greater than 15 kbar, suggesting that a thick (>50 km) crustal root was present under the southern margin of the NCC during the Early Cretaceous. The widespread Late Jurassic to Early Cretaceous adakitic granites (160–135 Ma) along the southern margin of the NCC, adjacent to the Qinling Orogen, also imply a crustal thickness of ~50 km during the Late Jurassic to Early Cretaceous (Guo et al. 2009; Hu et al. 2012; Li et al. 2012; Zhao et al. 2012a; Li et al. 2013). The lower-crustal mafic xenoliths from the Mesozoic (~160 Ma) volcaniclastic diatreme in Xinyang, along the southern margin of the NCC and adjacent to the Tongbai Orogen, indicate that the Late Jurassic lower crust extended to at least 41–56 km depth (Zheng et al. 2003). However, the Late Triassic (228–215 Ma) shoshonitic granitoids along the southern margin of the NCC (Ding et al. 2011; Qi et al. 2012) have much higher HREE contents and lower La/Yb ratios than the Early Cretaceous adakitic rocks, suggesting that crustal thickness was less than 40 km in the Late Triassic. Thus, the crust was considerably thickened during the Late Triassic to Late Jurassic. Previous studies have suggested that the crustal thickening was related to the Triassic collision between the North China and Yangtze cratons (W.L. Xu et al. 2006; 2008; H.J. Xu et al. 2007; Wang et al. 2007a; Guo et al. 2009; Li et al. 2013b; Liu et al. 2012; Yang et al. 2016). However, the geochronological and geochemical characteristics of the Triassic (228–200 Ma) granitoids in the Qinling Orogen suggest a setting of post-collisional extension during the Late Triassic (Wang et al. 2005, 2007b, 2011, 2013; Zhang et al. 2005; Qin et al. 2009; Ding et al. 2011). Meanwhile, the geochronology data and P–T paths of the HP–UHP metamorphic rocks in the Qinling–Tongbai–Dabie Orogen suggest that the continental deep subduction slabs were exhumed to mid-crustal levels in the Late Triassic (Hacker et al. 1998; Zheng et al. 2002; Liu et al. 2010a, 2011). Therefore, the crustal thickening and magmatism after the Late Triassic was not connected with the NCC–YC collisional events. Given the lack of Jurassic (200–160 Ma) magmatism along the southern margin of the NCC and the Qinling–Tongbai–Dabie Orogen, crustal thickening is unlikely to have been caused by the underplating of mantle-derived magma. This consideration is also supported by the εNd(t) values (~11.8 to ~15.2) of the Jialou granitoids. Studies of late Mesozoic deformation and magmatism in the east continent indicate that strong intra-continental orogenesis and crustal thickening occurred during the late Middle Jurassic to Early Cretaceous, which resulted from multi-directional contraction due to the far-field effects of multiple plate convergence and related orogenic activities (the collisional north Mongol–Okhotsk Orogen, the accretionary coastal Orogen along the
eastern margin of the east Asian continent, the Bangong–Nujiang Orogen in the southwest) around the east Asian continent (Davis et al. 2001; Dong et al. 2007, 2008, 2015; Zhang et al. 2007; Li et al. 2013a; W.L. Xu et al. 2013). The lithosphere of the east Asian continent was thickened, reaching a maximum during the Late Jurassic or the Early Cretaceous. Based on the above considerations, we consider that crustal thickening along the southern margin of the NCC was caused by a Middle Jurassic to Early Cretaceous intra-continental orogeny.

The Jialou adakitic rocks suggest that the thickened crust (>50 km) beneath the southern margin of the NCC still existed at 130 Ma or younger. In Cenozoic basalts from the NCC, eclogite xenoliths are absent and high-pressure granulite xenoliths do not contain garnet, indicating that the Cenozoic crust was significantly thinner than the Mesozoic crust (Zheng et al. 2003). The late-stage Early Cretaceous (<130 Ma) granites have low (La/Yb)$_N$ and Sr/Y ratios, and significantly negative Eu anomalies, suggesting that their parental magmas were in equilibrium with residues containing plagioclase, hornblende, and no garnet (Gao et al. 2014a, 2014b). These late-stage granites were formed by partial melting of the crustal root at depths of less than 40 km, implying that the high-density granulitic and eclogitic lower crust during the early stage of the Early Cretaceous was delaminated prior to emplacement of the late-stage granites. Therefore, the thickened crust must have been rapidly thinned after the formation of the adakitic rocks (~130 Ma). A similar magmatic evolution and thinning of thickened crust have been found in the Dabie–Sulu Orogen, the Xuhuai area, the Jiaodong peninsula, the Liaodong area, and the interior of the NCC (Yang et al. 2005; W.L. Xu et al. 2006; Hou et al. 2007; He et al. 2011, 2013; Guo et al. 2013; Li et al., 2013; Zhang et al. 2013; Yang et al. 2016). We therefore suggest that the late Mesozoic adakitic magmas in the NCC were controlled by a uniform tectonic regime. Recently, an increasing number of studies have suggested that the westward subduction of the Palaeo-Pacific plate beneath the east Asian continental margin played an important role in the Early Cretaceous magmatism and lithospheric thinning of the NCC (Guo et al. 2013; Tang et al. 2013; Goldfarb and Santosh 2014; Gao et al. 2014a, 2014b). Consequently, the crustal thinning corresponding to the lithospheric thinning of the NCC in the Early Cretaceous may have been related to subduction of the Palaeo-Pacific plate.

Based on the discussions above, we propose the following scenario to explain the late Mesozoic crustal evolution and magmatic activities of the southern margin of the NCC (Figure 10). In the Early to Middle Triassic, the NCC collided with the YC along the Qinling–Tongbai–Dabie Orogen, following the subduction of Palaeo-Tethyan oceanic crust. Until the Late Triassic, the subducted slab break-off might cause upwelling of the asthenospheric mantle. The asthenospheric upwelling induced partial melting of the enriched lithospheric mantle and lower crust, and led to the formation of post-collision granitoids. The tectonic setting gradually changed from collision compression to post-collision relaxation. Following a quiet period of magmatism (200–160 Ma), the late Middle Jurassic to Early Cretaceous intra-continental orogenesis thickened the lithosphere of the southern margin of the NCC. The thickened lithospheric keel dipped into the hot asthenosphere. The convection of deep (hot) asthenosphere might have reactivated the lithospheric keel, elevating the geothermal gradient of lithosphere and reducing partial melting of the pre-existing thickened lower crust to generate large amounts of adakitic granitoids in the 160–130 Ma. Partial melting of the thickened lower crust would increase the density of the lower crust and trigger the delamination and foundering of the residues of lower crust and underlying lithospheric mantle after 130 Ma. Meanwhile, the input of heat sources from the upwelling asthenosphere induced widespread partial melting of the thinned crust, generating normal granitoid rocks. The continental crust of the southern margin of the NCC must have been thinned after the extraction of the adakitic magmas and the delamination of the lower crust and lithospheric mantle.

7. Conclusions

(1) The Jialou granitoids along the southern margin of the NCC, adjacent to the Tongbai Orogen, were emplaced at ~130 Ma and have high Sr and Ba contents, high Sr/Y and (La/Yb)$_N$ ratios, and low MgO and Y concentrations, indicating a low-Mg adakitic affinity.

(2) The Jialou low-Mg adakitic rocks were derived from partial melting of mafic Palaeoproterozoic (1.8–2.2 Ga) lower crust of the NCC at depths of >50 km, leaving the residual phases of garnet and amphibolite.

(3) The crustal thickening during the late Middle Jurassic to Early Cretaceous and crustal thinning after 130 Ma along the southern margin of the NCC were not directly related to the collision between the North China and Yangtze cratons.
Figure 10. Cartoons showing the Mesozoic crustal evolution and magmatic activities of the southern margin of the North China Craton. (a) Early–Middle Triassic: Continental collision between the Yangtze and North China Cratons during the Early to Middle Triassic. (b) Late Triassic: Slab break-off caused upwelling of the asthenosphere in the Late Triassic and partial melting of enriched lithospheric mantle and lower crust, forming the post-collision granitoids (modified from Ding et al. 2011). (c) 160–130 Ma: Convection of hot asthenosphere might have reactivated the lithospheric keel, elevating the geothermal gradient of lithosphere and reducing partial melting of the thickened lower crust to generate large amounts of adakitic granitoids. (d) After 130 Ma: Foundering of the residues of lower crust and underlying lithospheric mantle resulted in asthenospheric upwelling leading to partial melting of the thinned crust, producing massive normal granitoids.
Acknowledgments

We sincerely acknowledge Huaikun Li and Jianzheng Geng for assistance in the LA-MC-ICP-MS U–Pb zircon analyses. Critical reviews by two anonymous reviewer and Editor-in-Chief’s comments by Dr Robert J. Stern substantially improved the manuscript. This research was supported by the National Key Basic Science Research Project of China [grant number 2015CB856104] and the National Natural Science Foundation of China [grant number 41472064].

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Key Basic Science Research Project of China [grant number 2015CB856104], National Natural Science Foundation of China [grant number 41472064].

References

Hu, G.H., Zhao, T.P., and Zhou, Y.Y., 2014, Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton: Precambrian Research, v. 246, p. 296–318. doi:10.1016/j.precamres.2014.03.013

crust beneath the southern North China Craton: Precambrian Research, v. 269, p. 162–182. doi:10.1016/j.precamres.2015.08.001

Streckeisen, A., 1976, To each plutonic rock its proper name: Earth-Science Reviews, v. 12, p. 1–33. doi:10.1016/0012-8252(76)90052-0

Zhang, C., Ma, C.Q., and Holtz, F., 2010, Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China): Implications for delamination of the lower continental crust and melt-mantle interaction: Lithos, v. 119, p. 467–484. doi:10.1016/j.lithos.2010.08.001

