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Geochemical data used in this paper to identify geochemical signatures associatedwith Femineralization in east-
ern Tianshan mineral district, China are compositional data. In order to eliminate the spurious relationships
between compositions, isometric logratio (ilr) transformation is currently employed to deal with the closure
effects. The opened geochemical data are further analyzed by principal component analysis. By back-
transforming to the clr space, PCA results of ilr transformed data with geological meanings of their counterparts
assist in recognition of spatial distributions of both intermediate-felsic igneous rocks and fault systems in the
study area. In comparison with log-transformed geochemical data, the ilr transformed ones are theoretically
reasonable to apply standard statistics. In addition, multivariate outliers are identified to investigate their associ-
ationswith the formation of these two geological features. At the end, this paper suggests that the ilr transforma-
tion is necessary to be applied routinely before applying statistical treatments to raw geochemical data.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Eastern Tianshan mineral district is a famous polymetallic mineral-
ized zone in China (Han and Zhao, 2003; Mao et al., 2005; Zhang et al.,
2008). Caused by a prolonged history of tectonic evolution, magmatism
(e.g., volcanic eruption, magmatic emplacement, and hydrothermal
activities) was widely spread across the space, which benefitedmetallic
mineralization in this area (Cui et al., 2008). Among various types of
mineralization, volcanic-sedimentary Fe deposits with great profits
have greatly interested geologists in China. Fe deposits hosted by volca-
nic strata aremostly located in the Jueluotag Carboniferous volcanic belt
where the volcanic edifices are distributed in high density. Most Fe de-
posits were hydrothermally altered by the Late Carboniferous–-Middle
Permian intermediate-felsic intrusions (Ding, 1990; Han et al., 2002).
Furthermore, indicated by existing literature, the volcanic strata were
genetically and spatially dominated by regional fault systems
(BGEDXP, 2009). Therefore, better understandings to spatial distribu-
tions of both intermediate-felsic igneous rocks and fault systems will
benefit future Fe exploration in eastern Tianshan district, China.

With development of computer sciences in past decades, exploratory
data sets were frequently employed to recognize geo-anomalies (Cheng,
2007) or outliers in a statistical sense (Filzmoser et al., 2005) formapping
of mineral potential. As an important source of geo-information, geo-
chemical data recording multiple element concentration have been
ghts reserved.
successfully processed by advanced multivariate analytical methods
(e.g., factor analysis, cluster analysis, etc.) to identify mineralization-
associated geological bodies and delineate mineralization-favored spaces
(Bogoch et al., 1993; Brantley andWhite, 2009; Cheng, 2007; Cheng et al.,
2011; Hao et al., 2007; Wang et al., 2011, 2012, 2013; Zhao et al., 2012,
2013, 2014). On the other hand, outlier detection as one of the main
tasks in multivariate data analysis has been implemented in many case
studies since outliers with different distributions to the regular observa-
tions may indicate atypical phenomena in space (Barceló et al., 1996;
Filzmoser and Hron, 2008; Filzmoser et al., 2005, 2009b, 2012; Reimann
et al., 2005; Rose et al., 1979). According to the detection, relations be-
tween secondary geo-processes (e.g., mineralization, sedimentation, vol-
canism, etc.) and the origin of outliers can be investigated and further
benefit mineral exploration.

Commonly used exploratory data sets (e.g.,mineral contents of igne-
ous rocks, elemental concentration of whole-rock geochemical samples,
rock types of sediment samples, etc.) are often compositional data
which have long been of concern in the geological field (Aitchison,
1982, 1984; Buccianti, 2011; Buccianti et al., 2006; Carranza, 2011;
Chayes and Trochimczyk, 1978; Rollinson, 1992). The closure effect fre-
quently results inmisleading conclusions, especiallywhen standard sta-
tistical treatments are applied to those data sets. Standing for relative
information of different parts to a whole, compositional data can be al-
ways represented as summing to a unit constant sum constraint (e.g., 1
for the case if an observed physical quantity is in parts per unit, 100 for
the case if the physical quantity is in percentage, etc.) (Filzmoser and
Hron, 2009; Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn
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and Egozcue, 2006). Unlike unconstrained variables whose values are
free to vary from−∞ to +∞ in Euclidean space independently, compo-
sitional data (e.g., exploratory data by geological observations) lie in the
simplex (Aitchison, 1986) and are often with positive values ranging
from 0 to 1 (or a constant sum) (Pawlowsky-Glahn and Egozcue,
2006). Restricted by the force of a constant sum, geo-information
carried by compositions is trading off each other. Taking one geochem-
ical sample as an example, an increase in the proportion of one element
will cause a decrease of the other(s) to some degree. As a result, corre-
lation coefficients of compositions are not free to vary from −1 to +1
independently, and theremust be at least one negative correlation coef-
ficient; furthermore, correlation coefficients are negatively biased
(Pawlowsky-Glahn and Egozcue, 2006; Thomas and Aitchison, 2006).
Consequently, correlations among these compositions are often spuri-
ous, misleading and/or meaningless in a statistical sense (Rollinson,
1993). Standard statistical methods (e.g., principal component analysis)
employed to examine relations among open variables might be inap-
propriate for the analysis of untransformed compositional data, since
these methods are mostly designed for Euclidean space (i.e., open
systems) (Aitchison, 1983).

In practice, logratio transformations are commonly employed in geo-
chemical data processing to open closed systems for better understand-
ings of realistic relationships among compositions (Carranza, 2011;
Egozcue et al., 2003; Filzmoser et al., 2012; Gallo and Buccianti, 2013;
Verma et al., 2006). Logratio transformations process compositional
data by two treatments: defining ratios of compositional parts and taking
logarithm on the ratios. The former is to decompose the closure effect by
selecting proper divisors, while the latter is to make the transformed
compositional data lognormally distributed (Aitchison, 1982, 1986;
Filzmoser et al., 2009a; Zhou, 1998). In general, threemain logratio trans-
formations are frequently applied to compositional data: (1) additive
logratio (alr) transformation (Aitchison, 1982, 1983, 1986); (2) centered
logratio (clr) transformation (Aitchison, 1982, 1983, 1986); and (3) iso-
metric logratio (ilr) transformations (Egozcue et al., 2003), advantages
and drawbacks of which will be reviewed in later sections.

The current research demonstrates a geochemical exploration
model which employs the logratio transformed stream sediment
geochemical data to investigate geochemical signatures associated
with Fe mineralization in eastern Tianshan mineral district, China.
The modeling process consists of spatial delineation and outlier detec-
tion. First, principal component analysis (PCA) is applied to ilr trans-
formed geochemical data for mapping of spatial distributions of
mineralization-associated intermediate-felsic igneous rocks and fault
systems. Second, outliers resulted from tectonic–magmatic activities
in the study area are recognized by a multivariate outlier detection
method, which are beneficial to identify the geochemical signatures of
these two geological features.

2. Geological background

Eastern Tianshan mineral district is located in the eastern Xinjiang
province, China, and situated in the junction zone of the Siberian,
Kazakhstan–Junggar, and Tarim plates. As a part of Jueluotag minerali-
zation zone (Han and Zhao, 2003; Hou et al., 2006), it is bound in the
north by the Turpan–Hami basin (part of the Junggar plate), in the
south by the Aqikekuduke–Shaquanzi fault zone, in the west by the
Xiaorequanzi area, and in the east by the Late Paleozoic Beishan rift
(Mao et al., 2005) (Fig. 1).

Influenced by the Early Paleozoic subduction of the Junggar crust (in
the north) under the Tarim crust (in the south) (Ma et al., 1993; Wang
et al., 1994; Zhang et al., 2005), fault systems are well developed in this
area. Three E–W trending faults including the Kanggurtag–Huangshan,
Yamansu and Aqikekuduke–Shaquanzi from the north to the south
make up the tectonic framework of the study area. They are the south
boundaries of the Kanggurtag–Harlik (A), the Qiugemingtashi–
Huangshan (B), and the Aqishan–Yamansu subareas (C), respectively
(Li et al., 2002; Mao et al., 2005; Yang et al., 1996). Stratigraphically,
the Qiugemingtashi–Huangshan subarea clamped in the middle is a
series of disordered strata which were highly deformed and metamor-
phosed. On the contrary, strata in the Kanggurtag–Harlik and the
Aqishan–Yamansu subareas are ordered volcanic–sedimentary strata
deposited from the Middle Ordovician to Upper Carboniferous and the
Lower Carboniferous to Middle Permian, respectively (Li et al., 2002;
Mao et al., 2002, 2005; Wang et al., 2006; Zhang et al., 2004; Zhao
et al., 2012).

Tectonism dominated the magmatic activities and consequent Fe
mineralization in eastern Tianshan district (BGEDXP, 2009). E–W
trending faults restricting the extent of stratigraphical subareas confine
occurrences of magmatic activities at a regional scale (e.g., volcanism,
sedimentation, igneous intrusion, etc.) (Mao et al., 2002; Qin et al.,
2002; Wang et al., 1994; Xia et al., 2005). Furthermore, intersections
of faults striking along N-E and N-W orientations controlled the local
allocation of volcanic edifices (BGEDXP, 2009; Ma et al., 1997; Qin
et al., 2002). Located in volcanic arc, the Yamansu Formation (C1y)
consisting of terrigenous clastics, carbonate rocks, and mafic–felsic
bimodal volcanic rocks in the Aqishan–Yamansu area is the main host
strata of Fe deposits. (BGEDXP, 2009; Han et al., 2002; Jiang et al.,
2002; Ma et al., 1997;Wang et al., 2006; Yang et al., 1996). Mechanical-
ly, ore materials migrated along magma towards ground surface and
precipitated in lower basins after volcanic eruption (Han et al., 2002).
As a result, preliminary Fe ore bodies were formed around fault-
controlled volcanic edifices during flow, cooling, and solidification of
magma. As an important characteristic, most of these ore bodies were
further concentrated and enriched by hydrothermal fluids differentiat-
ed from post-mineralization granitoid intrusions (Chen, 1999; Ma
et al., 1993, 1997;Wang, 2005; Zhang and Xie, 2001). Therefore, tecton-
ically controlled magmatism played significant roles in Fe mineraliza-
tion. Better understandings of those igneous rocks can improve
metallogeny studies of the Fe deposits. Fortunately, outcrops of these ig-
neous rocks (i.e., intrusions and extrusions) through prolonged history
of surface denudation provide important clues for Fe exploration in
eastern Tianshanmineral district, since the Fe ores are apt to formwith-
in contact zones of intrusions and volcanic sedimentary rocks (BGEDXP,
2009; Jiang et al., 2002; Li et al., 2002; Wang et al., 2007). Therefore,
identification of both intermediate-felsic igneous rocks and fault sys-
tems are beneficial and necessary to Fe exploration.

Because the eastern Tianshan mineral district is located in the Gobi
Desert area, mineral exploration in this district is greatly impeded by
natural terrain features (e.g., eolian sand, caliche, and regolith). Record-
ing geochemical signatures inherited from bedrocks, geochemical data
are commonly used to identify geochemical anomalies associated with
various geological bodies and to interpret geological phenomena
(Bogoch et al., 1993; Brantley and White, 2009; Cheng, 2007; Hao
et al., 2007;Wang et al., 2011, 2012; Zhao et al., 2012, 2013). The stream
sediment geochemical data currently used to identify the spatial infor-
mation of geological bodies associated with Femineralization were col-
lected and analyzed by Chinese National Geochemical Mapping Project
as part of the “Regional Geochemistry National Reconnaissance (RGNR)
Project”. Samples were collectedwithin drainage basins, in which 39 el-
ements/compounds were mainly analyzed by means of X-ray Fluores-
cence (Xie et al., 1997; Zhuang et al., 2003). The concentration of all
elements/compounds is smoothed by averaging all samples within
each 2 × 2 km2 cell. Thus, over eight thousand samples are employed
in current research. Detailed information about the RGNR can be
found in Xie et al. (1997).

3. Methodology

3.1. Logratio transformation

Confined by the constant sum representation, compositional data
(e.g., raw geochemical data) lie in a restricted space and carry only
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Fig. 1.Geologicalmaps of the study area. a: The study area and its tectonic setting (modified fromMao et al., 2005). A = Kanggurtag–Harlik area. B = Qiugemingtashi–Huangshan ductile
shear zone. C = Aqishan–Yamansu island arc. (1) = Dacaotan fault. (2) = Kanggurtag–Huangshan fault. (3) = Yamansu fault. (4) = Aqikekuduke–Shaquanzi fault. (5) = South
margin fault of Middle Tianshan. The study area is outlined in blue. b: Geological map of the study area.
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relative information (contained in ratios between parts) rather than
the absolute one (Pawlowsky-Glahn and Egozcue, 2006). Being
relative proportions, none of the compositional parts can vary between
(−∞, +∞) independently. For example, if SiO2 contained in a sample of
igneous rock accounts for 69% of the total weight, then the content of
another constituent like MgO can only take values less than 31%. In
the restricted space or so-called simplex (Aitchison, 1986), data are
following Aitchison geometry where D-part compositions only contain
D-1 dimensional information (Egozcue and Pawlowsky-Glahn, 2006).
In other words, the correlation and/or covariance matrices of composi-
tional data are singular (Pawlowsky-Glahn and Egozcue, 2006). Since
most standard statistical methods are designed for Euclidean geometry,
application of these treatments to raw geochemical datawould result in
misleading conclusions even though the log-transformed data are nor-
mally distributed (Filzmoser et al., 2012). Therefore, logratio transfor-
mation which can convert compositional data to Euclidean space is
necessary to deal with the closure effect, and logratio transformed
data can then be analyzed by unconstrained multivariate statistics ap-
propriately (Aitchison and Egozcue, 2005; Carranza, 2011). The additive
logratio (alr), the centered logratio (clr), and the isometric logratio (ilr)
transformations are three main approaches to convert compositional
data to an open system (Carranza, 2011; Pawlowsky-Glahn and
Egozcue, 2006).

Constant sum representation of D-part compositional data
x = (x1, …, xD)T form a simplex (denoted as SD), where the compo-
sitional parts xi (i = 1, 2, …, D) (e.g., 39 elements/oxides recorded
in currently used stream sediment geochemical samples) are strictly
positive components summing to a constant (e.g., 100%). Geochem-
ical data as a closed system can be opened by alr (Eq. (1)), clr
(Eq. (2)) and ilr (Eq. (3)) transformations, respectively (Egozcue
et al., 2003; Filzmoser et al., 2009a):

yi ¼ log
xi
xD

i ¼ 1; 2; …;D−1ð Þ ð1Þ
yi ¼ log
xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∏D
i¼1xi

D
q i ¼ 1; 2; …;Dð Þ ð2Þ

yi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−i

D−iþ 1

r
log

xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏D

j¼iþ1xj
D−i
q i ¼ 1; 2; …;D−1ð Þ: ð3Þ

Some general and specific properties of these three forms of logratio
transformations derived from literatures are reviewed as follow:

(1) Formulas for the alr and clr transformations are relatively simple.
By alr transformation, one compositional part (i.e., denominator
or divisor) is selected to divide the remaining parts (i.e., numer-
ators) and then log-transformation is taken on the ratios
(Aitchison, 1986). By clr, the transformation utilizes the geomet-
ric mean of all parts as the divisor and then log-transformation is
applied to the ratios (Aitchison, 1986). Different from alr and clr,
by ilr transformation the stepwise elimination of compositional
parts is taken into calculation of geometricmeanwhich performs
as the divisor. It provides one-to-one conversion of compositions
from the Aitchison geometry into a vector in the Euclidean real
space (Filzmoser et al., 2012; Hron et al., 2010). Therefore, com-
pared with clr and ilr transformations, results of alr transforma-
tion are subjective regarding the divisor (Filzmoser et al., 2009b).

(2) Both alr and ilr transformations reduce the number of resulting
variables (i.e., from SD to RD − 1). It means that one variable will
be sacrificed during alr and ilr transformations (Reimann et al.,
2012). On the contrary, the clr transformation preserves D real
components (i.e., RD), transformed data are adding up to zero.
Consequently, clr transformed vectors are collinear and still
constrained in a sub-space (Egozcue et al., 2003; Filzmoser
et al., 2012; Pawlowsky-Glahn and Egozcue, 2006). However,
clr transformation which treats all components symmetrically
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enables an easier interpretation of single clr variables in sense of
the original compositional parts (Filzmoser et al., 2009b;
Reimann et al., 2012).

(3) Only ilr transformed vectors lie in orthogonal systems, and stan-
dard statistics designed for Euclidean space are consequently
applicable for the ilr transformed variables (Buccianti, 2013;
Carranza, 2011; Filzmoser et al., 2009b, 2010; Pawlowsky-
Glahn and Egozcue, 2006). However, by non-linear functions,
ilr transformed variables do no longer possess the sense of their
original counterparts. The insufficiency of direct connections to
original variables results difficulties in interpretation of statistical
results (Filzmoser and Hron, 2009; Filzmoser et al., 2009a;
Pawlowsky-Glahn and Egozcue, 2006). Attention should be
paid during the interpretation of statistical results. Specifically,
for PCA procedure in a current study, this problem can be cali-
brated by back-transforming statistical results (e.g., loadings
and scores from PCA) based on ilr transformed variables to clr
space (Filzmoser et al., 2009b). Through this approach, interpret-
able results can then be derived. A more detailed introduction
regarding back-transformation of PCA results to clr space can
be referred to Filzmoser et al. (2009b).

Overcoming drawbacks of subjectivity of alr transformation and
collinearity caused by clr transformation, ilr transformation generating
correct equivalent of compositions in real Euclidean space has been
broadly practiced to decompose closed number systems (Buccianti,
2013; Carranza, 2011; Filzmoser et al., 2010, 2012). Furthermore,
analysis from clr spacemakes the PCA results of ilr transformed compo-
sitions much more interpretable.

3.2. PCA

PCA is a classic multivariate analysis technique which has been
commonly used to examine relationships among variables. By matrix
transformation (i.e., orthogonal transformation), multiple related vari-
ables can be converted into uncorrelated principal components (PCs)
based on a covariance or correlation coefficient matrix (Cheng et al.,
2011; Horel, 1984; Jolliffe, 2002; Loughlin, 1991). Since only the first
few PCs posses most of variances of input data sets which are retained
for further interpretation, PCA is an efficient tool in reducing dimension-
ality of multi-variable data sets.

For a n × p data matrix X with p variables xi (i = 1,…, n), PCs are
frequently derived from its covariance matrix C(X) (Filzmoser et al.,
2005). Based on the covariance matrix, the eigenvalues and eigenvec-
tors can be calculated:

det C Xð Þ−λI½ � ¼ 0 ð4Þ

C Xð Þ−λI½ �U ¼ 0 ð5Þ

where, I is the p × p identitymatrix, and “det” is the determinant of the
matrix formed by C(X) − λI. λj (j = 1, 2, …, p) calculated from the
characteristic equation of C(X) is the eigenvalue, and U = [aj1, a j2, …,
ajp] is the eigenvector matrix. Each PCj can be expressed as a linear
combination of the p variables (i.e., X1, X2, …, Xp) as:

PC j ¼ aj1X1 þ aj2X2 þ…þ ajpXp ð6Þ

where PCj is the scores of the jth PC (j = 1,…, p).
In practice, PCA has been commonly used to geochemical data anal-

ysis. According to the loadings of each geochemical variable, geo-
information is interpreted in support of geological exploration.

3.3. Multivariate outlier detection

Belonging to other distributions, outliers resulting from one or
more different secondary geo-processes are of primary interest of
statistical analysis of geochemical data (Filzmoser et al., 2005). For a
p-dimensional multivariate sample xi (x1, …, xn), rather than extreme
values which are defined as extremely high or low values along single
coordinates, multivariate outliers (Barnett and Lewis, 1994) are detect-
ed based on Mahalanobis distance (MD):

MDi ¼ xi−tð ÞTC−1 xi−tð Þ
� �1=2

i ¼ 1; …;nð Þ ð7Þ

where t and C are estimations of location (i.e., themultivariate arithmetic
mean or centroid) and scatter (i.e., covariance matrix), respectively
(Barceló et al., 1996; Filzmoser and Hron, 2008; Filzmoser et al., 2012).
For themultivariate normally distributed data, theMahalanobis distance
is approximately chi-square distributed with p degrees of freedom (χp

2).
Outliers are defined as observations with great values ofMDi (Filzmoser
et al, 2005). Selection of t and C are significant to multivariate outlier de-
tection. However, the normally used t and Cmentioned abovemay often
mislead the statistical results since these estimators are sensitive to the
distribution of outliers (Filzmoser et al., 2012; Hampel et al., 1986).

A robustmethod, theminimumcovariance determinant (MCD) esti-
mator, proposed by Rousseeuw (1985) is one of the commonly used
techniques to recognize reliable outliers,which provides affine transfor-
mations of t and C in calculation (Filzmoser et al., 2012). The
Mahalanobis distance estimated from Eq. (7) by using theMCD estima-
tor is so-called as robust distances (RDs), and outliers determined by
using these RDs account for approximately 25% of total samples. How-
ever, themain drawback of thismethod is the difficulties in differentiat-
ing true outliers from extreme values because of using a fixed threshold
value (e.g., χp;0.98

2 ). To overcome the drawback, an adaptive threshold
(i.e., adjusted quantile) was proposed by Filzmoser et al. (2005) to cal-
culate robust Mahalanobis distances. As introduced in Filzmoser et al.
(2005),Gn(u) denotes the empirical distribution function of the squared
robust distances RD2, and G(u) is the distribution function of χp

2. There-
fore, multivariate outliers can be detected by comparing the tails of
Gn(u) and G(u) (i.e., departures of the empirical from the theoretical
distribution):

pn δð Þ ¼ sup
u≥δ

G uð Þ−Gn uð Þð Þþ ð8Þ

where δ = χp;1 − α
2 defines the tails; “+” means the positive differ-

ences. In addition, Filzmoser et al. (2005) suggested two approximate
formulas to calculate the critical value pcrit for distinguishing between
outliers and extremes:

pcrit δ;n;pð Þ ¼ 0:24−0:003pffiffiffi
n

p for p≤10: ð9Þ

pcrit δ;n;pð Þ ¼ 0:252−0:0018pffiffiffi
n

p for pN10: ð10Þ

where, n is the sample size and p is the dimensions. A more detailed in-
formation of the robust and adaptive outlier detection methods can be
referred to Filzmoser et al. (2005, 2012).

4. Data processing and results

Benefitting from the development of computer sciences and spatial
analysis techniques, numbers of algorithms have been greatly improved
and applied to geo-data sets. Ratios of geological variables have been ex-
tensively used to deal with geological issues. Their applications can be
found in geochronological analysis (e.g., Rb–Sr isochron diagrams
where 87Sr/86Sr is plotted against 87Rb/86Sr) (Rollinson, 1993), ore gen-
esis analysis (e.g., Co/Ni in pyrite to reveal ore types) (Bralia et al., 1979),
remote sensing interpretation (e.g., the band ratio of TM bands 5/7 to
map hydrothermal alteration) (Sabins, 1999), geophysical analysis
(e.g., velocity ratio of Vp/Vs to examine physical properties of



Fig. 2. Biplots of the first two PCs for a: the log-transformed and b: ilr transformed
geochemical data.
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sedimentary rocks) (Wilkens et al., 1984), etc. The logratio transforma-
tions dealing with the closure effect of compositional exploratory data
(Aitchison, 1986; Egozcue and Pawlowsky-Glahn, 2006; Filzmoser
et al., 2012; Pawlowsky-Glahn and Egozcue, 2006) can be used to inves-
tigate geological issues as well. For example, the concept of balances
(Egozcue and Pawlowsky-Glahn, 2005) taking care of both statistical
sense and geological meaning of the ratio was successfully applied in
many cases. Since balances describe relative behaviors of groups of
compositional parts in an orthogonal geometry, standard statistics can
be applied to the transformed variables, appropriately (Buccianti,
2013; Carranza, 2011; Filzmoser and Hron, 2009; Hron et al., 2010;
Pawlowsky-Glahn and Egozcue, 2006; Tolosana-Delgado et al., 2005).

Delineations of spatial distributions of intermediate-felsic igneous
rocks and fault systems are significant to Femineral exploration in east-
ern Tianshan mineral district, China (Cheng, 2012; Zhao et al., 2012,
2013). As an important source of geo-information, stream sediment
geochemical datawere frequently used to fulfill these objectives by geo-
logical interpreters due to their advantages in providing clues to the
presence of geological bodies on/near the surface (Rose et al., 1979).
However, currently employed geochemical data are typical composi-
tional data restrained in a closed system, and spurious relationships
between concentration values of 39 elements/oxides may yield mis-
leading results if standard statistics are applied. Therefore, the ilr trans-
formation calibrating problems of the closure effect is currently
involved in pre-processing of geochemical data; after that, to recognize
intermediate-felsic igneous rocks and fault systems in the study area,
PCA is further employed to integrate the ilr transformed variables.

In order to depict the spatial distribution of intermediate-felsic igne-
ous rocks, geochemical distributions of seven major rock-forming com-
ponents (i.e., SiO2, Na2O3, MgO, Fe2O3, K2O, CaO, and Al2O3) are used,
concentration values of which are recorded in wt.%. In addition, igneous
rocks in this area can be characterized by enrichment of Ba and Be in
intermediate-felsic igneous rocks and enrichment Li in mafic igneous
rocks (BGEDXP, 2009). Concentration values of these three elements
are recorded in ppm. In addition, being geo-pressure relief zones, fault
systems are ideal places for hydrothermal fluid flow and ore materials
precipitation. Fault zones are often accompanied with prominent geo-
chemical anomalies of certain elements (Qian, 2009). In other words,
these geochemical anomalies are indicative to the spatial distribution
of fault systems. Different from the strategy of igneous rock identifica-
tion, geochemical elements used for fault system recognition are trace
elements Au, As, Hg and Sb which are recorded in ppm in geochemical
data. These elements are extremely sensitive to changes of surrounding
circumstances and readily dissolve into or precipitate from hydrother-
mal fluids. Specifically, As, Hg, and Sb performing as mineralizers can
benefit Au mineralization within fault systems. In this study, geochem-
ical anomalies of these elements are chosen as indicators to faults
(BGEDXP, 2009; He and Chen, 2002; Yuan et al., 1979). Therefore, in
order to recognize spatial distributions of intermediate-felsic igneous
rocks and fault systems in eastern Tianshan mineral district, China, 14
geochemical variables (i.e., SiO2, Na2O3, MgO, Fe2O3, K2O, CaO, Al2O3,
Ba, Be, Li, Au, As, Hg and Sb) from 8768 stream sedimentary samples
(i.e., a matrix of 8768 × 14) are chosen to investigate objective geolog-
ical features.

In this paper, two experiments are demonstrated as follows:

(1) PCA applied to 14 log-transformed geochemical variables. This
experiment demonstrates a traditional treatment to geochemical
data, which cannot open the closed system.

(2) PCA applied to 14 ilr transformed geochemical variables. Rather
than the first case, input variables for PCA in this experiment
are opened geochemical data. Since ilr transformed variables
are short of direct interpretability, PCA results (e.g., loadings,
scores, etc.) are back-transformed to the clr space to fulfill recog-
nitions of the objective geological features (Filzmoser et al.,
2009b; Zuo et al., 2013).
Comparing biplots of these two experiments (Fig. 2), the closure ef-
fect is distinct in the biplot of the PCA result based on log-transformed
data (Fig. 2a). Most variables are plotting oppositely to felsic oxides
(i.e., SiO2, K2O, Na2O, and Al2O3). It corresponds to a primary environ-
mental context of the study area that dominating surface features are
rich of felsic oxides. Since these felsic oxides are prevalent in either
Gobi-desert coverage or igneous rocks (i.e., two main lithological units
in the study area), concentrations of other compositional parts in
these two ground features must be greatly declined due to the closure
effect. In the biplot, these variables are plotting towards negative load-
ings of PC1. In addition, variables (i.e., Au, As, Hg, Sb, MgO, Fe2O3, CaO
and Li) are ungrouped in the biplot (Fig. 2a) that illustrates spurious
relationships among compositional parts in the closed system. In other
words, the real paragenetic characteristics of element associations
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indicative to specific geological processes or geochemical signatures of
geological bodies cannot be reflected sufficiently.

On the contrary, the biplot of the PCA result based on ilr transformed
data (Fig. 2b) demonstrates a nicely grouped plotting of variables that
implies characteristics of the opened system in real space. Lying in an
orthogonal space, PCA applied to ilr transformed datawill be reasonable
from the viewpoint of statistics. By back-transforming to clr space for a
better interpretation, rays of ilr transformed variables in the biplot
(Fig. 2b) are grouped and pointing towards different directions. These
features indicate that the PCA result of ilr transformed data is achieved
in a right geometry (Filzmoser et al., 2010). Rays of SiO2, K2O, Na2O,
Al2O3, Ba, and Be in the fourth quadrant are indicative to themost prev-
alent ground features (i.e., Gobi-desert and intermediate-felsic igneous
rocks) in the study area. Two noticeable sub-groups in this quadrant are
SiO2-K2O-Ba and Al2O3-Na2O-Be, respectively. The former implies occu-
pation of quartz and feldspars in either intermediate-felsic igneous
rocks or sandy covers; whereas the latter implies clay minerals pro-
duced by extravagant eolation. The downward-pointed association of
Fe2O3, MgO, CaO, and Li corresponds to geochemical signatures of
mafic igneous rocks (e.g., the Yamansu Formationwhich is mainly com-
posed of intermediate-mafic volcanic rocks, volcaniclastics, carbonate
rocks, tuff, etc.) which are the primary hosts of volcanic-sedimentary
Fe deposits (BGEDXP, 2009). The group of As, Sb, and Hg lying in the
third quadrant corresponds to geochemical signatures of tectonic pro-
cesses and/or their end products (i.e., fault systems). The separation of
Au from this groupmight imply extraordinarymobility of Au in the nat-
ural environment. It may not paragenetically exist with As, Sb and Hg,
although these elements are common mineralizers of Au.

From PCA score maps of these two experiments, geo-information of
grouped element associations descriptive and/or indicative to
intermediate-felsic igneous rocks and fault systems can be derived
from Figs. 3 and 4, respectively. According to the two biplots (Fig. 2),
geochemical signatures of the felsic group (i.e., SiO2, K2O, Na2O, Al2O3,
Ba, and Be) indicative to spatial distributions of intermediate-felsic igne-
ous rocks can be represented by high PC1 scores of the log-transformed
(Fig. 3a) and the ilr transformed variables (Fig. 3b). In these maps, red-
dish patterns are coincident with outcrops of intermediate-felsic igne-
ous rocks and (SiO2-rich) sandy covers in this area. On the contrary,
the element association descriptive of mafic rocks and fault systems is
shown in opposite directions of felsic concentrations. For better
Fig. 3. PCA scores (reddish patterns) of two experiments indicating the spatial distributions of in
log-transformed variables; b: PC1 scores based on ilr transformed variables.
visualization, a reversed color scheme of Fig. 3 is applied (Fig. 4). The
low PC1 scores of log-transformed (Fig. 4a) and the ilr transformed var-
iables (Fig. 4b) are indicating mafic rocks and fault systems. In these
maps, reddish patterns coincide with fault traces and outcrops of volca-
nic strata, especially the Yamansu Formation.

Comparing these two experiments from a statistical sense, only PCA
result of ilr transformed geochemical data processed in right geometry
can be accepted to investigate real relationships among geochemical
variables. In the current study, PC1 scores of ilr transformed variables
not only display patterns coincident with outcrops of objective geolog-
ical features, but also follow both statistical and geological guidance.

Detection of outliers is an important step in multivariate data analy-
sis, since the outliers with different distributions to regular observations
may indicate atypical phenomena in space. In eastern Tianshanmineral
district, tectono-magmatic activities as singular geo-processes (Wang
et al., 2012, 2013; Zhao et al., 2012) often result in enrichment or deple-
tion of certain elements/compounds. Consequently, outliers of geo-
chemical data resulted from extraneous processes (Filzmoser et al.,
2005) rather than background are necessary to be detected to assist in
recognition of intermediate-felsic igneous rocks and fault systems in
the study area. In this paper, a multivariate outlier detection technique
(Filzmoser et al., 2009b, 2012) is implemented by employing the
R package mvoutlier (Filzmoser et al., 2012). Multivariate outliers are
detected using the adaptive approach of Filzmoser et al. (2005).
Shown in the biplot (Fig. 2b), the outliers are labeled as symbol “+”.

For each observation, distances to the medians of the univariate ilr
variables are measured. After that, the median of all these distances de-
termines the color of the symbol. A high value coincident with red sym-
bol “+” indicates that most univariate parts of the corresponding
observation have values greater than the average; whereas a low
value coincident with the blue or green symbol “+” indicates that
most univariate parts of the corresponding observation are mainly low
values (Filzmoser et al., 2012). In the biplot (Fig. 2b), multivariate out-
liers in red color indicating high “extremeness” are clustered in both
felsic and faults directions. It can be inferred that these two groups of
multivariate outliers are derived from the tectono-magmatic activities.
The spatial information of these outliers is probably corresponding to
the distributions of end products of the geo-processes that are
intermediate-felsic igneous rocks and fault systems. In addition, it is
not surprising to see that the aggregation of multivariate outliers
termediate-felsic igneous rocks in eastern Tianshanmineral district, China. a: PC1 scores of

image of Fig.�3


Fig. 4. A reversed color scheme of Fig. 3. PCA scores (reddish patterns) of two experiments indicating spatial distribution of fault systems and volcanic strata in eastern Tianshan mineral
district, China. a: PC1 scores of log-transformed variables; b: PC1 scores based on ilr transformed variables.
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along the felsic direction is much denser than the fault direction, since
intermediate-felsic igneous rocks occupymore areas than fault systems
(i.e., line features) do in a 2-dimensional scenario. When cross-
referencing to the outliers in univariate variables (Fig. 5a), it is easy to
find that outliers with high values of ilr transformed fault elements
(i.e., Au, As, Hg, and Sb) aremore sparsely distributed; whereas the out-
liers with high values of felsic elements (i.e., SiO2, K2O, Na2O, Al2O3, Ba,
and Be) are plotted densely. From the spatial distributions of thesemul-
tivariate outliers (Fig. 5b), clusters of multivariate outliers in red are
generally observed at the locations of intermediate-felsic igneous
rocks, whereas, the sparsely distributed outliers in red are prone to
appear along the fault traces.

5. Summary and discussion

This paper applies PCA to geochemical data for mapping of spatial
distributions of intermediate-felsic igneous rocks and fault systems in
eastern Tianshan mineral district, China. As an important source of
geo-information, geochemical data have been widely practiced in map-
ping of mineral exploration targets and various geological features.
However, special concerns to the closure effect of geochemical data
were not sufficiently considered in many cases during the procedure
of data processing. Specifically, constrained in simplex, the geochemical
data processed by standard statistics designed for Euclidean space are
theoretically inappropriate. Currently used stream sediment geochemi-
cal data as typical compositional data are restrained within a closed
system; therefore, in order to explore real relationships among these
geochemical variables associated with the two geological features, the
ilr transformation is employed to reduce the closure effect. Two exper-
iments of PCA demonstrated in this paper suggest that the ilr transfor-
mation generating correct statistical outputs and releasing realistic
insights into the structure of the compositional data is significant to
the utilization of statistical approaches to compositional data.

In addition, multivariate outliers that could be of interest to geolo-
gists are detected as well. By the adaptive approach of multivariate out-
lier detection, the outliers caused by the formation of geological features
or associated with the intermediate-felsic igneous rocks and fault sys-
tems are distinguished fromextremevalues andmarked in a spatial sce-
nario. In this paper, both PCA and multivariate outlier detection can be
supportive to inspect the locations or spatial distributions of these two
geological features. However, the differences between these two
methods are: PCA results identify spatial distributions of geological fea-
tures relying on covariance or correlation of geochemical variables;
whereas, the multivariate outlier detection focuses on data structure
to recognize samples with different distributions (e.g., for this study
area, they are caused by the tectono-magmatism) to regular observa-
tions. Based on ilr transformed geochemical data, the two objective
geological features are interpreted by PCA and multivariate outlier de-
tection, appropriately. Achieved results are not only beneficial to
future Fe exploration in the study area, but also provide another mean-
ingful geological study to the community of compositional data analysis.
Therefore, ilr transformation is necessary and suggested to be used rou-
tinely when standard statistical treatments, especially the PCA and/or
factor analysis are applied to raw geochemical data.

In this paper, geological guidance to recognize geological features is
dependent on the selection of geochemical variables. The concept of
Balances mentioned in Section 3 which can construct the coordinates
with more flexibility to investigate geological features is suggested to
be attempted in further studies.
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